

Satellite Constellation Mission Design using Model-Based Systems Engineering

and Observing System Simulation Experiments

Sreeja Nag

PhD Candidate in Aerospace Engineering Massachusetts Institute of Technology Summer Research Associate, NASA Ames Research Center

PhD Supervisor

Prof. Olivier L. de Weck (MIT Aero/Astro) August 6, 2014

- Problem Statement Earth Radiation Budget
- Proposed Mission Design Methodology using MBSE and OSSE
- Design Methodology applied to the Problem
- Preliminary Results for Full System Simulation
- Summary and Future Work

- Small Sats as constellations have tremendous potential in supplementing flagship missions in Earth Observation (ESTO Earth Science Vision 2030)
- *"Synergies of complementary"* measurements...avoidance of engineering and management difficulties associated with integration on a common bus; and a more agile and cost-effective replacement of individual sensors... moving away from a single parameter and sensor-centric approach toward a systems approach that ties observations together to study processes important to understanding Earth-system feedbacks" – NRC Decadal Survey, 2007

Introduction

- "Model-Based Systems Engineering is the normalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development" – INCOSE, 2004 All the more important for constellations as complex systems!
- "Observing System Simulation Experiments (OSSEs) are designed to mimic the process of data assimilation" – NASA GSFC GMAO. E.g. OSSEs have been used in many journal papers to show the shortcomings of all flagship radiative flux instruments (TRMM, MODIS show uncertainties of 5-10W/m²& 10-15W/m² in in short/longwave) and in designing CLARREO.
- Need to design small sat constellation missions in a language that the Earth Science community uses to designing flagship missions understands so that a quantifiable gap is justified and filled quantifiably.

 Introduction – Small Satellite Constellations, MBSE and OSSE

Problem Statement – Earth Radiation Budget

- Proposed Mission Design Methodology using MBSE and OSSE
- Design Methodology applied to the Problem
- Preliminary Results for Full System Simulation
- Summary and Future Work

But TOR ~= 0.9 W/m² (-2/+7 [45],0.5[47],0.4-0.7)

Because TOR has spatial, temporal and angular dependence

Specifically mentioned in NRC Decadal Survey

Image Credits: Trenberth and Fasullo, 2018

Improving the TOR Estimation

Currently under development: Cubesat radiometers (RAVAN) with flux reso<0.3 W/m² Technology demonstration to scale up to constellations

What is the "optimal" constellation architecture?

Constraints:

Tech (within comm. cubesat subsystems)

Programmatic (available launches)

Objectives: Science Metrics

=> Quantified by OSSE

=> NOT constraints

- => Flexible during decisions
- => Optimizable based on real constraints

- Introduction Small Satellite Constellations, MBSE and OSSE
- Problem Statement Earth Radiation Budget
- Proposed Mission Design Methodology using MBSE and OSSE
- Design Methodology applied to the Problem
- Preliminary Results for Full System Simulation
- Summary and Future Work

Mission Design Methodology

Coupled and iterative MBSE + OSSE

*as a function of tech requirements, biomes of interest, science applications

Architecture Gen, Support, Sizing with MBS

Science Performance Evaluation with OSSE

- Introduction Small Satellite Constellations, MBSE and OSSE
- Problem Statement Earth Radiation Budget
- Proposed Mission Design Methodology using MBSE and OSSE
 - Design Methodology applied to the Problem
- Preliminary Results for Full System Simulation
- Summary and Future Work

MBSE: Architecture Generation

Major Variables to generate architectures:

- Altitude (Baselined at the Landsat orbit from ERB instruments)
- L FOV (assumed from RAVAN radiometer = 130 deg)
- Inclination (Baselined to Landsat)

MBSE: Architecture Generation

Major Variables to generate architectures:

- Altitude (Baselined at the Landsat orbit from ERB instruments)
- -1 FOV (assumed from RAVAN radiometer = 130 deg)
 - Inclination (Baselined to Landsat)
 - Number of satellites (arrangement varies = uniform, clustered)

32 satellites = 8 planes X 4 satellites/plane

64 satellites = 8 planes X 8 satellites/plane

MBSE: Interim Metrics for Performance

Major metrics – Spatial and Temporal

MBSE: Interim Metrics for Performance

MBSE: Evaluating Support Capability

NASA

- Propulsion for orbit initialization and maintenance
- Initialization = (1) Secondary launch w/o propulsion OR (2) Secondary launch w/ propulsion to arrange into planes, and then arranging around the plane.

MBSE: Evaluating Support Capability

NASA

- Propulsion for orbit initialization and maintenance
- Maintenance = To counter altitude drop due to atmospheric drag only because all orbit params but RAAN and TA are the same for uniform constellations

Tall bars => 350 km, Short bars => 425 km

using a Fully Analytical Method using STK w/ Hohmann Transfer every 2 weeks to maintain altitude Like before, an 6 Delta-V in m/s required analytical automated 5 algo was developed and compared to STK for plugging into the MSBE: 3 4 6 Cubesat Standard in U [1U,3U,4U,6U]

MBSE: Sizing Costs

- Development costs
 - Single TFU cost estimated from RAVAN = \$4 mill
 - Learning curve parameter calculated as 0.662 from APL published data of making multiple instruments
 - Recurring cost assumed variable within bounds
 - Cost capped within EVM
- Launch costs ignored
- Initialization and Maintenance costs
 - Function of delta-V alone
 - Ground system support ignored

+ Init + Maint cost because they depend on init strategy (time to science trade) and maint strategy (lifetime trade)

OSSE: Setting up the "Truth"

UMGLO Model Output

Find the global TOR (long and shortwave) every 3 hours:

The Met Office global forecast model was used to generate the TOR data and obtained with permission from Christine Chu, University of Manchester.

BUT the data is isotropic!

LW (up) & SW (down) : 29 Aug 2010, 00:00 (left) & 12:00 (right)

OSSE: Setting up the "Truth"

15

OSSE: Setting up the "Truth"

Shortwave Total Outgoing Radiation in W/m²

OSSE: Flux Integration over FOV

From Radiance to Flux over Field of View (FOV)

For each satellite at each time, treat each seen grid point (from MBSE model) as the center of a spherical triangle and adding all true radiances, weighted by angle & area.

 $Flux = \int_{2\pi} Radiance(\Omega)cos(\theta)d\omega = \int_{0}^{2\pi} \int_{0}^{\pi/2} Radiance(\theta,\varphi)cos(\theta)sin(\theta)d\theta d\phi$

IIII OSSE: Spherical Harmonics Model

- True flux from each grid point (s) is a weighted sum of basis functions (Sph. Harms) $y(\theta, \lambda, t) = \sum_{l=0}^{L} \sum_{m=0}^{l} C_{lm}(t) Y_{lb}(t) = \sum_{l=0}^{L} \sum_{m=0}^{L} \sum_{m=0$
- Measured flux (y) is the FOV integration over s, and also has a Sph. Harm rep

$$(\theta,\lambda,t) = \sum_{l=0}^{L} \sum_{m=0}^{l} C_{lm}(t) Y_{lm}^{c}(\theta,\lambda) + S_{lm}(t) Y_{lm}^{s}(\theta,\lambda),$$

$$y(\theta,\lambda,t) = \frac{1}{\Omega} \int_{\Omega(\theta,\lambda)} s(\theta',\lambda',t) d\Omega + e$$

$$y(\theta,\lambda,t) = \sum_{l=0}^{L} \sum_{m=0}^{l} \left[\overline{C}_{lm} \overline{Y}_{lm}^{c}(\theta,\lambda) + \overline{S}_{lm} \overline{Y}_{lm}^{s}(\theta,\lambda) \right] + e$$

Coefficients of y and s are related by a Pellican cap parameter (smoothing operator)

$$\begin{cases} \overline{C} \\ \overline{S} \end{cases} = \beta_l \begin{cases} C \\ S \end{cases}$$
$$\beta_l = \frac{1}{1 - \cos FOV} \frac{1}{l+1} [P_{l-1}(\cos FOV) - \cos FOV P_l(\cos FOV)]$$
$$\beta_1 = \frac{1}{2} \left[\sin FOV \cot \frac{FOV}{2} \right] \qquad \beta_0 = 1$$

Model proposed by: 18 Shinchan Han, NASA GSFC

OSSE: Spherical Harmonics Model

- Given truth, measured
- flux can be calculated per for an alytically point analytically For any given constellation architecture, pick the points seen by the satellites (MBSE output)
- Run inverse model to estimate original spherical coefficients and compare with truth

- Introduction Small Satellite Constellations, MBSE and OSSE
- Problem Statement Earth Radiation Budget
- Proposed Mission Design Methodology using MBSE and OSSE
- Design Methodology applied to the Problem
 - Preliminary Results for Full System Simulation
- Summary and Future Work

When an *isotropic* truth is used, the errors reduce with the number of satellites, if evenly arranged, and then saturates after full coverage. If uneven, there may be oscillation before saturation.

MBSE: 710 km, 130° FOV, 98.18° inc OSSE: UMGLO truth, Averaging model

> Comparison to another monolith (CERES on TRMM): Flux errors wrt UMGLO are 15.37 W/m² for shortwave radiation and 34.31 W/m² for longwave radiation.

If an *anisotropic truth* is used, errors increase overall BUT reduce with the number of satellites because more overlap allows better angular estimation. Need a functional model to represent TOR.

MBSE: 710 km, 130° FOV, 98.18° inc OSSE: UMGLO + CAR truth, Averaging model

> Anisotropic radiation field requires more satellites to for same performance because the angular variation of data needs to be captured along with the spatial and temporal variation

When the *spherical harmonic model* is used, the number of satellites required is pushed down because of its higher fidelity and functional representation.

NOAA accuracies not reached within 64 satellites for **1D rep at Equator** (worst case).

More will be needed globally!

When *altitude is lowered* (710km => 500 km), coverage rate drops and errors increase for the same satellite numbers.

Angular resolution increase is a benefit especially in anisotropic truth is used so complicated dependence on altitude is seen (*spatial* – *angular trade-offs*)

- Introduction Small Satellite Constellations, MBSE and OSSE
- Problem Statement Earth Radiation Budget
- Proposed Mission Design Methodology using MBSE and OSSE
- Design Methodology applied to the Problem
- Preliminary Results for Full System Simulation
 Summary and Future Work

Conclusions and Future Work

- MBSE + OSSE coupled model proposed for mission design of small sat constellations to *fill specific, quantifiable gaps left by flagships*.
- All models are *modular and flexible*. E.g. flagship is ERB and TOR
- MBSE model was coded in MATLAB, STK (mostly for validation) and truth + models constructed for the OSSE in MATLAB, Fortran.
- Some insights can be drawn from sub models to constrain trades (delta-V cap, cost cap, FOV and clustering influence on errors, etc.)
- Full simulations show 50-70% improvement using 64 satellites and 10-20% using 16 satellites compared to monolith OSSEs.
- 64 satellites at 710 km can achieve *errors wrt truth of 1.5 and 5.2 W/m²* in short and longwave, when NOAA requires 1 and 1.7W/m².
- Spatio-angular trade-offs can be understood only with the OSSE
- OSSE models to be improved (2D SH), cost models more detailed (C2C) & more launch/init strategies for Pareto front construction. 24

- Prof. Olivier de Weck (MIT)
- Prof. David Miller (MIT, NASA HQ)
- Prof. Kerri Cahoy (MIT)
- Dr. Warren Wiscombe (NASA GSFC)
- Dr. Jacqueline LeMoigne (NASA GSFC)
- Dr. Charles Gatebe(NASA GSFC)
- Dr. Shinchan Han (NASA GSFC)
- Dr. Christine Chu (University of Redding, UK)
- Dr. Lars Dyrud (Draper Lab)
- NASA Earth and Space Science Fellowship
- Frank J. Redd Scholarship Committee

Thank you!

Questions?

For more info, please email: <u>sreejanag@alum.mit.edu</u> or

sreeja.nag@nasa.gov