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Abstract

Distributed Space Missions such as formation flight and constellations, are being recognized as important Earth Observation solu-
tions to increase measurement samples over space and time. Cubesats are increasing in size (27U, �40 kg in development) with increasing
capabilities to host imager payloads. Given the precise attitude control systems emerging in the commercial market, Cubesats now have
the ability to slew and capture images within short notice. We propose a modular framework that combines orbital mechanics, attitude
control and scheduling optimization to plan the time-varying, full-body orientation of agile Cubesats in a constellation such that they
maximize the number of observed images and observation time, within the constraints of Cubesat hardware specifications. The attitude
control strategy combines bang-bang and PD control, with constraints such as power consumption, response time, and stability factored
into the optimality computations and a possible extension to PID control to account for disturbances. Schedule optimization is per-
formed using dynamic programming with two levels of heuristics, verified and improved upon using mixed integer linear programming.
The automated scheduler is expected to run on ground station resources and the resultant schedules uplinked to the satellites for exe-
cution, however it can be adapted for onboard scheduling, contingent on Cubesat hardware and software upgrades. The framework
is generalizable over small steerable spacecraft, sensor specifications, imaging objectives and regions of interest, and is demonstrated
using multiple 20 kg satellites in Low Earth Orbit for two case studies – rapid imaging of Landsat’s land and coastal images and extended
imaging of global, warm water coral reefs. The proposed algorithm captures up to 161% more Landsat images than nadir-pointing sen-
sors with the same field of view, on a 2-satellite constellation over a 12-h simulation. Integer programming was able to verify that opti-
mality of the dynamic programming solution for single satellites was within 10%, and find up to 5% more optimal solutions. The
optimality gap for constellations was found to be 22% at worst, but the dynamic programming schedules were found at nearly four
orders of magnitude better computational speed than integer programming. The algorithm can include cloud cover predictions, ground
downlink windows or any other spatial, temporal or angular constraints into the orbital module and be integrated into planning tools for
agile constellations.
� 2017 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Earth-science processes are intrinsically dynamic,
complex, and interactive. To achieve an all-embracing
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understanding of the emergence and evolution of these pro-
cesses requires the collection and assimilation of enormous
amounts of data, using complementary measurements in
space and time. Spatial measurements from multiple van-
tage points – space, air, ground and water – help resolve
measurement and model uncertainties. Distributed Space
Missions (DSMs) such as formation flight and constella-
tions are being recognized as important solutions to
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increase measurement samples over space and time
(D’Errico, 2012), especially when augmented with aircraf.
The National Research Council (NRC), in its mid-term
assessment of NASA’s implementation of the 2007 Deca-
dal Survey recommended a ‘‘more agile and cost-effective

replacement of individual sensors. . . moving away from a sin-
gle parameter and sensor-centric approach toward a systems

approach that ties observations together to study processes

important to understanding Earth-system feedbacks”

(National Research Council, 2012). DSMs also minimize
launch and operational risks by adding redundancy in
numbers, and allow for deploying evolved technology as
they become available. However, they carry a risk unex-
pected failures in case of poorly understood interdependen-
cies. Continued effort for creating and maintaining an
interoperable environment for a diverse set of sensors
(land, marine, air, space) using software and internet is
underway in NASA Sensor Webs (Mandl et al., 2006).
The goal is to allow sensors to operate in a semi-
automated, collaborative manner for scientific investiga-
tion, disaster management, resource management and envi-
ronmental intelligence. The development of software tools
to design DSMs, in keeping with customizable science
objectives for rapid pre-PhaseA trade studies is currently
underway at NASA Goddard Space Flight Center
(LeMoigne et al., 2017). While this initiative is expected
to foster innovation on multi-satellite solutions in the
Earth Science community, it does not model operational
planning, scheduling or autonomy.

Response and revisit requirements for Earth Observa-
tion (EO) vary significantly by application, ranging from
less than an hour to monitor disasters, to daily for meteo-
rology, to weekly for land cover monitoring (Sandau et al.,
2010). Geostationary satellites provide frequent revisits,
but at the cost of coarse spatial resolution, extra launch
costs and no polar access. Lower Earth Orbit (LEO) satel-
lites overcome these shortcomings, but need numbers and
coordination to to match GEO’s responsiveness. While
adding satellites to a constellation or optimizing their
orbits can significantly improve revisit/response, adding
agility to the satellites and autonomy to the constellation
can improve the revisit/response for the same number of
satellites in given orbits. Moreover, human operators are
expected to scale linearly with constellation nodes
(Eickhoff, 2011) and as satellites and ground stations scale
to hundreds or more, operations staffing may become cost
prohibitive. Deployment, maintenance, imaging, downlink,
maneuver, de-orbit and other satellite operations within
scarce resources are complex scheduling problems (Lin
et al., 2005), and NP-hard unless formulated and bounded
very carefully to make the design space tractable (Arkali
et al., 2008). Scaling the problem to multiple satellites
and including uncertainty of control subsystems adds com-
plexity even further. Early investment in autonomy will
increase management efficiency of the inevitably numerous
space nodes, including better fault detection and isolation.
Large, single satellites with agile attitude control capa-
bilities have demonstrated rapid image collection from
space, mostly individually but also sometimes as an ad-
hoc constellation. Fig. 1 (not to scale) shows six images
of interest that are imaged by a single satellite by pointing
appropriately over three orbits, which would not have been
possible with a fixed viewing sensor. Autonomous, agile
steering of the spacecraft body allows image acquisition
over a much larger field of regard, thereby improving cov-
erage and revisit. Planning and scheduling algorithms have
been successfully developed for single large satellite mis-
sions, examples being Automated Scheduling and Planning
Environment (ASPEN) for EO-1 (Sherwood et al., 1998),
scheduling for the Advanced Spaceborne Thermal Emis-
sion and Reflectance Radiometer (ASTER) (Muraoka
et al., 1998) on the Terra satellite, high resolution imagery
from the IKONOS commercial satellite (Martin, 2002) and
scheduling observations for the geostationary GEO-CAPE
satellite (Frank et al., 2016). Scheduling image strips over
Taiwan by ROCSAT-II was formulated as an integer pro-
gramming problem and Lagrangian relaxation is used to
decompose it into separable sub-problems (Lin et al.,
2005). The hyperspectral instrument CHRIS, carried on
the Proba spacecraft, demonstrated dynamic pointing for
multi-angle imaging of specific ground spots that it is com-
manded to observe (Barnsley et al., 2004).

The problem of tasking multiple, diverse sensors was
preliminarily addressed for aerial flight paths using the ori-
enteering algorithm and demonstrated on NASA’s
INTEX-B flight data (Oza et al., 2008). Scheduling
resource-constrained observations for large satellite con-
stellations has been formulated in detail for the French
PLEIADES project (Damiani et al., 2005; Lemaı̂tre et al.,
2002) with recommendations dependent on weak to strong
coordination between the space agents. Scheduling for the
COSMO-SkyMed constellation of synthetic aperture
radars was proposed using a deterministic constructive
algorithm with look-ahead and back-tracking capabilities
to allow for updates on resources and changes to requests
(Bianchessi and Righini, 2008). Evolutionary algorithms
have been proposed and computationally simulated for sin-
gle spacecraft (Xhafa et al., 2012), multiple payloads (Jian
and Cheng, 2008) and comparative merits documented for
satellite fleets (Globus et al., 2002), but they are very lim-
ited in mission applications. Algorithms for agent-based
autonomous scheduling have been implemented on
NASA’s Deep Space 1, and simulated for a cluster on a
real-time testbed (Schetter et al., 2003). (Abramson et al.,
2013; Robinson et al., 2017) have developed a coordinated
planner that can handle a continuous stream of image
requests from users, by finding opportunities of collection
and scheduling air or space assets to maximize collected
utility.

In the last decade, Cubesats have increased in size (27U
or �40 kg standard in formulation) and emerged as
increasingly capable platforms for Earth observation



Fig. 1. Cartoon showing a single satellite dynamically pointing to observe six images over three orbits. Our proposed algorithm defines the attitude
control, steering schedule for a constellation of such satellites and global image requests.
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(Space Studies Board, 2016). Small satellites with one or
few instruments provide a cost effective way to deploying
a large constellation, thereby leveraging economies of scale
and redundancy in numbers. In comparison, large bus-
sized satellites with many instruments need redundancy in
their components and higher reliability because the cost
of their failure is higher. Simulation studies have optimized
the scheduling for single Cubesat downlink to a network of
ground stations (Spangelo and Cutler, 2012) or multiple
payloads’ downlink to existing stations (Jian and Cheng,
2008), within available storage, energy and access time con-
straints. Studies have also combined single satellite
scheduling (using integer programming applied to greedy
search) with information sharing across satellites for a
weak consensus on feasible charging, downlink and obser-
vation schedules (Kennedy and Cahoy, 2015) using fixed
view imagers. Theoretical studies have shown that multiple
satellites when downlinking to ground stations with over-
lapping visibility can be scheduled in polynomial time only
for special cases when station reconfiguration time is near
zero (Arkali et al., 2008), and greedy and linear program-
ming algorithms suggested.

Given the increasingly precise attitude control systems
emerging in the commercial market for Cubesats (ARC
Mission Design Center, 2016), small spacecraft now have
the ability to slew and point as per command, within few
minutes of notice. While academic literature addresses
satellite scheduling/coordination for large, steerable satel-
lites and small, fixed view satellites, we found very little
work reported on algorithms for controlled pointing and
distributed target observation for imaging constellations,
given current Cubesat maneuverability, accurate pointing
and image angular constraints. Assuming a known Cube-
sat, small satellite constellation or Sensor Web structure
(in terms of orbits, sensors, ground stations, images of
interest, etc.), this paper demonstrates a scheduling algo-
rithm that steers each spacecraft attitude in a manner that
maximizes collected images and/or imaging time. The goal
is to inform design studies of agile constellation operations
because agility comes at the cost of ground segment com-
plexity and associated schedule optimization. (Morris and
Dungan, 2007; Morris et al., 2009) has simulated a work-
flow model and a model-based observation based planner,
which adapts to changes in its own configuration, recog-
nizes opportunities for modifying data acquisition plans
to improve overall performance and coordinates resources
and tasks accordingly. (Witt et al., 2008) demonstrated the
planner on NASA’s ST-5 mission for lights-out operations.
Our proposed, ground-based planner will also be model-
based and adaptive, however, for the purpose of scheduling
steering and imaging operations for multiple spacecraft.

2. Proposed methodology

This section proposes a scheduling framework for the
attitude control of multiple Cubesats, so that they can
(together) image as many given targets as possible, given
constraints from orbital mechanics (OM) and attitude con-
trol systems (ACS), and summarizes a review of relevant
scheduling literature used to inform this framework. The
innovative aspects are the modularity of the OM, ACS
and optimization modules, which allows independent
numerical solution, uncertainty modeling and innovation
within each, as will be described in the upcoming subsec-
tions. The algorithm can be applied to any satellite constel-
lation structure, ACS, target point list, space and time
varying cloud cover or new requests for data, and can be
modified easily for multi-angular imaging applications such
as single CHRIS or satellite formations (Nag et al., 2016).
It is expected to run, automated, on the ground station
computers and the resultant schedules uplinked to the
satellite at frequent overpasses. The length of the planning
horizon is determined by (and greater than) the latency
between expected overpasses, based on available ground
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station networks. The ground stations are expected to esti-
mate future satellite states using downlinked GPS data and
orbit propagation, and able to communicate across the glo-
bal ground network near immediately. Future work is envi-
sioned to allow implementation of the presented algorithm
onboard spacecraft, for more autonomous operations sim-
ilar to (Damiani et al., 2005). This will entail onboard pro-
cessing trades, onboard orbit determination, inter-satellite
communication to exchange states and plans, and other
hardware and software upgrades that are beyond the scope
of this article.

The agile Cubesat constellation scheduling problem for
imaging operations can be formulated using the variables
in Table 1. The orbital parameters or states of the satellites
(s 2 S), geometric constraints of the payload (FOR, FOV,
h), location and expected distortion of images (i 2 I , K(h))
and specifications of the ACS system (C, s, Mc, Tmax, IN)
are assumed known. Image importance can also be mod-
eled by replacing distortion with functional quality K(I),
in case the scheduling problem has to be formulated as a
set of images to be observed with varying urgency in civil
vs. military applications. Any uncertainty in values can
be added as stochastic variances (e.g. in ACS jitter) or as
random space–time functions (e.g. cloud cover obfuscating
some images). The solution will be in the form of X(s),
which describes the series of attitudes that the satellite will
command in order to maximize the images observed, after
optimizing over mission and geometric requirements and
hardware constraints. Our proposed framework and algo-
rithm is generic over most geometric requirements and
satellite/imager constraints and presented case studies are
realistic examples of such. However, the formulation can
only support a minimum FOV for the decoupled ACS
module (Section 2.5). Also, beyond a certain maximum
satellite size, it is far more efficient to steer the imager
alone, instead of the entire satellite, as demonstrated by
Ball Aerospace’s autonomous lower level software for
real-time data collection at the sensor level, applied to
adaptive lidars to control tens to a hundred individually
steerable laser beamlets (Lieber et al., 2017).

The most common algorithms in Earth Observation
Scheduling (EOS) applied to missions are those based on
greedy approaches (e.g. ASTER on Terra (Muraoka
et al., 1998)) and local search methods (e.g. knapsack algo-
rithm and Tabu search on SPOT-5 (Vasquez and Hao,
2001), ASPEN on EO-1 (Sherwood et al., 1998)). Global
optimization methods are expected to improve coverage
compared to local search, over all satellites, images and
times horizon. However, evolutionary or heuristic search
methods, by themselves, are very dependent on initial con-
ditions (genetic algorithms), need exponential time to con-
verge (simulated annealing) or large training sets (neural
nets). Analytical approaches are very quick in comparison,
however lack the ability to numerically model uncertainties
in satellite subsystems with customizable fidelity. For
example, (Bunkheila et al., 2016) demonstrates scheduling
the scan of single, agile satellites by dividing the areas of
interest into scan-able and chooses the sequence of strips,
based on various distance functions for an ideal orbit. It
uses fixed scanning times based on roll and pitch angles,
to compute the temporal feasibility of pointing, without
modeling the ADC system or its uncertainties.

EOS is well suited for the mixed integer linear program-
ming (MILP) approach because to perform any activity at
any time instant (or not) can be modeled as a binary integer
(e.g. GEO-CAPE (Frank et al., 2016) or ROCSAT-II (Lin
et al., 2005) scheduler) and CPLEX can solve such formu-
lations efficiently. However, MILP allows for only linear
constraints and a single objective function, and there is
no guarantee of reaching an optimum in linear time. The
first drawback can be addressed using linear bounds to
otherwise non-linear variables (under-constrained formula-
tion (Spangelo and Cutler, 2012)). The lack of a single, lin-
ear objective can be addressed using a Lagrangian sum of
multiple objectives or a convex function representation of
the objective. However, such approximations take away
from accuracy and cutting plane bounds need not always
be reliable (Lemaı̂tre et al., 2002). Nonetheless, MILP
has been successfully formulated for EOS in flight missions
- PLEIADES and the SPOT series (Lemaı̂tre et al., 2002),
GEO-CAPE (Frank et al., 2016) - and adapted as
Constraint-based Interval Planning in the EUROPA plan-
ner for Deep Space 1 (Frank et al., 2001). Constraint pro-
gramming is not restricted to integer variables and linear
equations/inequalities. Variables can be intervals or any-
thing in the finite domain and constraints can be arithmetic
or symbolic (Verfaillie et al., 2010).

EOS can also be framed as an orienteering problem
(Oza et al., 2008; Vansteenwegen et al., 2011) because it
is a selective traveling salesman problem (TSP) where
agents are required to visit as many checkpoints as possible
within a time frame, each associated with a weight. The tar-
get images can be assigned weights, and orbital or subsys-
tem constraints set up to represent travel times between
images and the objective is to maximize the weighted
sum. The prize collecting TSP not only minimizes travel
time but also penalizes for unvisited cities. It has been mod-
ified for scheduling stereo images using scanning satellites,
a convex value function and the Russian doll approach to
solve nested sub-problems (Benoist and Rottembourg,
2004). However, the interplay between orbital access to
required images by fast-moving LEO satellites and ACS-
dependent slewing times causes the time for the traveling
salesman to go from one image to another to be highly
dependent on the absolute time either image is accessed.
Variable travel times further add to TSP solution
complexity.

While dynamic scheduling across the full state space is
known to generate astronomical number of paths, unsolv-
able in polynomial time, branch and bound like approxi-
mations to the dynamic programming (DP) approach
have demonstrated a practically sub-optimal resolution of
the NP-hard non-restricted problem (Lemaı̂tre et al.,
2002). DP has also been applied to the dynamic scheduling



Table 1
Problem definition.

I Full set of images (latitude, longitude, altitude) to be observed
i Image number � I, the set of all images left to be observed
T Time horizon within which objective to be maximized
t Time step �T
S Full set of N satellites in the constellation
s Single satellite �S , represented by Keplerian elements [Semi major axis (SMA),

eccentricity, inclination, argument of perigee, right ascension of ascending node (RAAN), mean anomaly]
FOV Field of view of the imaging sensor on s
FOR Field of regard of the imaging sensor on s, constrained by hmax

h Off-nadir pointing angle of s, variable with t due to 3-axis ACS
hmax Maximum off-nadir pointing angle of s allowed for a feasible image
K(h) Spatial distortion of image i when taken at off-nadir angle h
Az Azimuth of s at any time t
El Elevation of s at any time t (isoformic with altitude and h)
X(s) Schedule of [Az,El] per s, to be executed by s over T
C Rotation matrix between desired and estimated orientations
s Control moment on rotor wheels
Mc Control moment in satellite body directions
Tmax Maximum torque per rotor
IN Moment of Inertia of the satellite

Fig. 2. Optimization of spacecraft attitude control schedules for maxi-
mizing required images covered, modularized into two subsystem
components and one optimizer. The variables are defined in Table 1 or
Sections 2.1 and 2.2.
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problem after it is decomposed into several simple, static
problems defined by a rolling horizon, which are automat-
ically appended with waiting tasks, as current tasks are
completed (Dishan et al., 2013). However, the ACS system
was modeled at linear swing speeds and no validation of
optimality is presented for the proposed heuristic algo-
rithm. DP has been proposed for onboard scheduling of
images to observe, within a reasoning horizon, power and
memory (Damiani et al., 2005). The satellites are provided
their image superset by ground control, also determined by
DP applied to their orbits, priority image positions and
downlink opportunities. However, the study does not
account for ACS capability, time, energy or the coordina-
tion across satellites over the reasoning horizon.

Our approach to finding the most optimal schedule for
controlling satellite attitudes within a constellation, for
maximizing images observed, as a function of satellite
orbits, satellite characteristics, ACS subsystem specifica-
tions, angular and field of view constraints, is summarized
in Fig. 2. Two satellite subsystems (OM and ACS) are
modularly separated from the optimization algorithm, such
that they simulate independently but provide parallel
inputs into the optimizer. Dynamic programming is chosen
as the algorithm for optimization, with custom heuristics to
make the search space tractable, followed by MILP to
assess solution optimality. To allow decoupling between
the subsystems and for the purpose of representative simu-
lation, the sensor attitude is forced to take one of a finite
number of pointing options (p 2 P ), which will be shown
to span the allowable pointing space. The subsystems and
their inputs/outputs will be described in the sections below.
The presented framework allows for the addition of more
subsystems and constraints, while using the same algorithm
for optimization. For example, ground stations may be
added as additional ground targets to the orbits module
and the optimization would add downlink access to the
schedule, as focused upon in (Arkali et al., 2008; Jian
and Cheng, 2008; Kennedy and Cahoy, 2015; Spangelo
and Cutler, 2012). Power and Data Handling can be added
as separate subsystems, which would add more constraints,
as inputs into the optimization module. The developed
algorithm is expected to run on the ground using estimates
of s 2 S, as informed by orbit determination, and images
required to be seen ði 2 IÞ within specified time bounds,
as informed by ground experts of automated ground-
based predictive algorithms.
2.1. Orbital mechanics (OM)

The OM module is responsible for computing coverage
and access. It assumes the knowledge of all satellites’
Keplerian elements and current states, defined in Table 1,
as downlinked from the satellites’ GPS systems or tracked



Fig. 3. A snapshot of the 19 discrete pointing options in three concentric
layers for a satellite conical sensor in orbit (left). The simulation can
accommodate different fields of view and higher densities or layers. For
example, 66 discrete options packed into five layers (right).
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by ground-based systems, followed by orbit determination.
The constellation is assumed to be optimized via regular
tools (D’Errico, 2012; LeMoigne et al., 2017) or flying
Ad-Hoc, and outside the scope of this paper. The orbits
for the known satellites are simulated using MATLAB-
controlled AGI’s Systems Tool Kit (STK) via the Micro-
soft Connect language. A satellite’s field of regard (FOR)
is defined as the area that its sensor can see at any instant
in time. Simplistically put, it is dependent on the sensor’s
maximum off-nadir angle (hmax), as defined by science
and technical requirements. The FOR of any satellite is
assumed to be a cone and discretized into multiple, densely
packed conical fields of view (FOV) corresponding to the
FOVs of the satellite sensors and representing the full set
of pointing options P. The algorithm used for discretiza-
tion is 2D circle packing in a circle (Stephenson, 2005),
for which analytical solutions1 as well as online solvers2

are readily available. The circular FOR spot is discretized
into several concentric layers of FOV spots as a function
of desired density, as seen in Fig. 3 (right). Each pointing
option p 2 P is characterized by [Az,El], the azimuth and
elevation of the satellite required to achieve that pointing
direction. [Az,El] can be easily computed from orbital
geometry and the location of the FOV spot from the
FOR’s center. A FOR discretized into 19 or 66 pointing
options is shown in Fig. 3 (left or right), with an FOV of
15� and 3.6� respectively. A sensor is allowed to point in
only one of these 19 or 66 directions at any instant in
our proposed simulation. The swath at any given time is
a function of the sensor FOV, orbital altitude and off-
nadir pointing h.

The lower limit of pointing options is the ratio of the
solid angles of FOR and FOV. In theory, there is no upper
limit because infinite options represent seamless pointing.
However, since the ACS module will slew and stabilize at
any given option, a large number of pointing options with
no new images to capture will expend computational
resources for no gain. The upper limit is thus set at the
ratio of the solid angle FOR and solid angle subtended,
at the sensor, by the Nyquist sampling distance between
the required images, on the ground.

The orbits module provides constellation access A(t,i,p,
s) as output. A(t,i,p,s) is a binary variable that = 1 if satel-
lite ‘s’, when pointing in direction ‘p’, can access image ‘i’ at
time ‘t’. Time is discretized into one-second steps for the
case studies presented in this paper, since the resolution
was sufficient for 20 kg satellite dynamics and required
integration time for the instruments, but can easily be
changed for other mission studies. The module can provide
this data for any constellation structure and number of
satellites. The module also provides the image spatial dis-
tortion D(p), i.e. the percentage increase of the ground
footprint due to off-nadir pointing. The footprint is a func-
1 https://en.wikipedia.org/wiki/Circle_packing_in_a_circle.
2 http://www.engineeringtoolbox.com/smaller-circles-in-larger-circle-d_

1849.html.
tion of the orbit altitude and sensor FOV, and its distortion
a further function of the off-nadir angle h. Nadir pointing
causes 0% distortion.
2.2. Attitude control systems (ACS)

The ACS module is responsible for computing steering
or slewing time between different attitude modes, and asso-
ciated uncertainties. The decoupling of the ACS from the
optimization routine allows for the independent formula-
tion and numerical solution of the attitude problem. In
general, the described ACS can ingest any given satellite
mass, moments of inertia, sensors and actuator specifica-
tions to achieve a calculation of the time required between
successive reorientations of the satellite pointing vector.
The result is two n(P) � n(P) matrices giving the times
and energy required to orient between any two sets of atti-
tude profiles or pointing options (with 0 on the diagonal),
where n(X) is the cardinality of set X.

For representation in this paper, we simplify the satellite
to an evenly mass-distributed cube composed of three sen-
sors (sun sensor, magnetometer, and rate gyro) with four
actuator wheels, of which three are aligned along the
orthogonal axes and one aligned diagonally. The actuator
wheels are commercially available from Blue Canyon Tech-
nologies (product RWP500), chosen as a specialized mid-
range attitude control solution for Cubesats. The volume
is listed at 10.8 � 10.8 � 10.8 cc with a mass of 0.75 kg,
and momentum and torque specifications viable for our
requirements. The wheels exhibit low jitter, operate at
200 Hz, exhibit extremely accurate torque control
(Daniel, 2016) and have been proposed for interplanetary
small sat missions. The satellite and ACS specifications
used as a representative example in this paper are listed
in Table 2, but the control strategies described are generic
for any satellite actively controlled with wheels with some
modifications required if other actuators are used. For
example, for thrusters, the ACS analysis would need to
reflect torque generated through thruster impulses, as well
as additional considerations for fuel mass and rise and fall

https://en.wikipedia.org/wiki/
http://www.engineeringtoolbox.com/smaller-circles-in-larger-circle-d_1849.html
http://www.engineeringtoolbox.com/smaller-circles-in-larger-circle-d_1849.html


Table 2
Satellite, sensor, and actuator properties. Rotor properties taken from the RWP500 from Blue Canyon Technologies.

Component Property Value

Satellite Mass 20 kg

Inertial matrix
0:245 0 0
0 0:245 0
0 0 0:245

2
4

3
5kg �m2

Sensors Sun sensor rpointing_error = 0.1�
Magnetometer rpointing_error = 0.1�
Rate Gyro rrate_error = 0.1�/sec

bias = 0:01 �0:01 0:02½ � rad/s
Actuators Number of rotors

4
Rotor orientation (relative to spacecraft)

1 0 0 1ffiffi
3

p

0 1 0 1ffiffi
3

p

0 0 1 1ffiffi
3

p

2
64

3
75

Moment of Inertia per rotor

0.0005 kg �m2

Maximum torque 0.025 Nm
Maximum angular momentum 0.5 Nms
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times of thruster operation. Control moment gyros, while
able to provide more torque, will require more complex
control due to the changing orientation of the actuator spin
axes relative to the satellite. Table 2 takes into account the
resource constraints of a 20 kg satellite. For example,
RWP500’s specifications confirm the availability of 23 W
for peak power, 6 W for power at full momentum and 3
W at half momentum. An approximate inertia of �0.245
kg-m2 is computed for a 20 kg satellite and 0.0005 kg-m2

for the wheels. The maximum allowed torque of 0.025 N-
m and 23 W peak power restricts the rotor spin rate to
245 rad/s, which allows 0.5 rad/s of maximum angular
velocity for the satellite (last row of Table 2). Given the
specifications of the satellite and its ACS, our automated
framework computes the available thresholds and restricts
the control phases (see Fig. 5) accordingly.

The primary requirement for attitude control is to reori-
ent the satellite to its necessary pointing direction as
quickly as possible. We found the bang-bang control
method to be an efficient solution, with a PD control (or
PID in the case of disturbances) when the satellite neared
its desired attitude for smoother operation. Two general
strategies were implemented:

(1) Full alignment, where all three axes are aligned
according to a specified orientation. This mode is
suitable in conditions where parallel requirements
must be met, such as directing the solar panels
towards the sun, while achieving pointing
requirements.

(2) Fast alignment, where only the camera sensor needs
to be oriented towards a certain direction. This
mode is suitable for normal operation since it con-
sumes less power and is in general faster than full
alignment.
The ACS maneuver is assumed completed when the
satellite is able to keep to within 0.2� of its desired pointing
direction. As will be seen in Section 2.5, decoupling
between ACS and optimization for the described control
algorithm, is possible for a minimum FOV of 3.6� and a
�5% error is assumed reasonable for Cubesat mission
requirements. An error of 0.2� at a 710 km orbit corre-
sponds to 2.5 km on the ground, which is similar in magni-
tude to orbit determination and control errors for
Cubesats.

The general attitude control algorithm can be visualized
as per the block diagram shown in Fig. 4. The dynamics are
propagated using the Euler equations in quaternion space,
in which the sensors measure as vectors and angular rates.
A Kalman filter is then used to estimate the attitude and
rotation rate of the satellite assuming a certain noise level
and bias of the sensors (Lefferts et al., 1982; Markley,
2003; Wen and Kreutz-Delgado, 1991). This feeds into
the control law, which consists of a bang-bang control
method (Wertz, 2012) for large angular displacements
and two levels of PD control for small angles(Trawny
and Roumeliotis, 2005; Wie and Lu, 1995). Commands
are then relayed to the actuators taking into account satu-
ration and maximum torque levels. The feedback loop is
completed by incorporating the moments generated by
the rotors back into the dynamic simulation. We assume
no external moments for the current investigation, as the
purpose of our study is to find an approximate minimum
time to complete successive reorientation maneuvers, but
the modularity of the ACS formulation allows for its incor-
poration, if required.

The estimation portion of the system consists of a Kal-
man filter which takes vector measurements provided by a
sun sensor and a magnetometer, as well as angular rates
through a rate gyro. Employing a first order quaternion



Fig. 4. Simplified block diagram of attitude control algorithm.
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integrator and a zeroth order angular velocity propagator
to estimate the relevant attitude and rates (Lefferts et al.,
1982; Trawny and Roumeliotis, 2005) according to the
specifications listed within Table 2, results in a pointing
angle uncertainty of roughly rerror = 0.03�. The system is
also able to estimate the bias of the sensors within a few
seconds of initial operation. Initialization assumes that
the spacecraft is stable (not tumbling) and the estimate
and actual pointing attitudes are roughly coincident.

The control law is segmented into two portions: a bang-
bang and a PD control component. The former orients the
satellite quickly into the desired orientation at the maxi-
mum available torque provided by the wheels, while the
latter provides optimal smooth control near the desired
attitude. The pseudocode for the control law is shown in
Fig. 6, where Kp is the Proportional control constant,
Kd the differential control constant, veig is the vector of
rotation, Arot is the rotor orientation matrix, his the angle
of rotation, u the control signal in satellite body directions,
xest are the estimated angular rates, trace is the Trace func-
Fig. 5. Phase plot of the bang-bang and PD control modes. Note that the satel
control area, in which it then smoothly approaches the origin.
tion of a matrix, max is the Maximum function, ‘+’ is Pseu-
doinverse and sgn is the Sign function. The algorithm first
calculates the rotation matrix, Euler axis, and Euler angle,
before assessing if the satellite is currently within the
bounds of bang-bang or PD control (Wertz, 2012). The
control moment is calculated accordingly and limited by
the maximum rotor torque available. For angles below
10�, the small angle approximation can be used to linearize
the problem. Control constants are chosen such that the
system exhibits a natural frequency of 0.5 and a damping
ratio 1.5. As shown by the attitude phase in Fig. 5 for a
specific scenario, the Euler angle is initially approximately
1.8 radians from desired with no initial spacecraft angular
velocity. After engaging the rotors to maximum torque, the
spacecraft starts slewing towards its targeted attitude, with
the rotors engaging in the opposite direction approximately
halfway through the entire maneuver, along the optimal
second order bang-bang switching line. When the mea-
sured attitude is within 10� of its desired attitude, the algo-
rithm switches to a PD control methodology. Finally, when
lite moves along the optimal bang-bang control line until it reaches the PD



Fig. 6. Control law pseudocode, where the variables are defined in the text or Table 1.
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the satellite achieves a bounded 0.2� within its desired atti-
tude, the algorithm will assume that the maneuver has suc-
cessfully terminated.

The current implementation gives an n(P) � n(P) array
of the required time to switch from one attitude to another.
Furthermore, it is desirable for the triangle inequality
between attitude maneuvers to be held, such that:

P i;j þ Pj;k � P i;k ð1Þ
where P i;j is the time required to change the attitude from
position i to j. Failure to uphold this condition leads to
complications within the optimization algorithm (Sec-
tion 2.3) such that there might be shorter paths towards
a particular attitude profile through an intermediate pro-
Fig. 7. Time required to slew among the 19 (left) and 66 (right) pointing option
angles are 28� (left) and 16.2� (right). The red lines represent the transition betw
figure legend, the reader is referred to the web version of this article.)
file, rather than transitioning directly. In the current for-
mulation, the triangle inequality holds for a pure bang-
bang/PD control architecture, but it can be broken by sim-
ply switching between control laws during arbitrary phases
of the attitude maneuver. This is due in part to what we
credit as a ‘‘successful” attitude transition (currently set
to a bound of 0.2�), and changes to the control law during
a maneuver may cause overshoot or instability in the final
result. This suggests that a LQR or model predictive con-
trol methodology might fare better than PD in these cases.
The outputs for the fast re-orientation for all combinations
of pointing options in Fig. 3, are shown as a color chart in
Fig. 7. There are three concentric circles of equal off-nadir
pointing for the case with 19 pointing options (1, 6, 12
s shown in Fig. 3, using the fast slewing algorithm. The maximum off-nadir
een concentric layers. (For interpretation of the references to color in this
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options each as indicated by the red lines) and five concen-
tric circles in the case with 66 options (1, 7, 13, 19, 26 each).
Fig. 8 shows a visualization of re-orienting from option #3
(Az = 60�, El = 75�) to option #18 (Az = 315�, El = 62�),
as shown in Fig. 3-left. The corresponding control
moments, calculated as per Fig. 6, to effect this re-
orientation are shown in Fig. 9.

Although the above formulation gives a good estimate
of a Cubesat ACS to rapidly slew and capture images, it
does not take into account disturbance moments (e.g. grav-
ity gradient, solar radiation, aerodynamic torques), inter-
nal forces (e.g. wheel friction, damping) and maneuvers
that might cause the system to saturate. In the event of sat-
uration, torque rods or gravity gradient maneuvers to
dump the angular momentum buildup are necessary to
ensure continued operation and are assumed available.
Additional operational considerations include solar panel
Fig. 8. Attitude visualization between the fast method and the full method. No
are different, with the full attitude method rotating significantly more to align

Fig. 9. Control moments per axes for fast vs. full attitude modes, with the full a
limiting available torque per axes due to wheel constraints.
alignment with the sun vector for power, diurnal depen-
dence of sensors (e.g. sun sensor), and downlink require-
ments with ground stations. For increased estimation and
control capability, a star tracker and magnetic torquers
or control moment gyros may be deployed and the pro-
posed framework allows for such changes quite modularly.
While the presented ACS is appropriate for the framework
in Fig. 2, ACS optimality can be improved as well as nar-
rower FOVs simulated if the attitude control process is
incorporated within the optimization routine, at the cost
of computational efficiency.

2.3. Optimization by dynamic programming

Our proposed algorithm optimizes the constellation
imaging schedule by using two levels of heuristics, applied
to select the ‘best’ path in the time-pointing option space
te that the final pointing directions are similar, but the general orientations
all 3 axes.

ttitude control mode requiring more torque and time to reorient. Note the



Fig. 11. Cartoon of a very simple example of the proposed algorithm.
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per satellite. The innovative aspects are the speed of execu-
tion due to usage of dynamic programming, linear time and
space complexity, and the ability to schedule for any flexi-
ble time horizon. Fig. 10 describes the algorithm in brief
and Fig. 11 shows a cartoon of the option space and an
example ‘best’ path. For every satellite, the state of point-
ing p at time t can be represented as a node – circle in
Fig. 11. Depending on the locations of the images to be
observed, node [p,t] is capable of observing an image (filled
blue circle) or not (hollow white circle). A feasible path in
this state space is one that connects the nodes, such that the
time to slew from one node (say, j) to another (say, i) sat-
isfies the slewing and stabilization time matrix C(pi, pj) as tj
= ti � C(pi,pj). Any node will have up to n(P) feasible paths
leading to it. Fig. 11 shows three such paths leading to
node [p = 5, t + 4]. The proposed DP algorithm starts at
t = 0, and goes over every pointing option and its feasible
previous options. It selects and stores the ‘best’ path/s at
any node, as it progresses through the simulation by incre-
menting time. Since any node considers feasible previous
nodes, one can simply add the path (and heuristic values)
since the previous node, to the stored path (and heuristic
values), without the need of any re-calculation.

To ensure that memoization per node does not become
astronomical, the dominated paths are eliminated in two
consecutive steps of heuristics.
Fig. 10. High level pseudocode of the proposed dynamic programming algorith
for multiple satellites are discussed in Section 3.2.
First, all n(P) paths are compared in terms of the
weighted number of unique images seen. Unique images
seen by the three paths in Fig. 11 are enclosed in a hollow
decagon, other images in the path will not be counted. The
weights obviously depend on the mission or application.
An example of weights is the image spatial resolution dis-
tortion, as computed in the orbits module – Fig. 2. Unique
images seen at maximum off-nadir pointing are less valu-
able than those seen at nadir pointing, so they can be
m, per satellite, where n(P) is the cardinality of P. The modified algorithms
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weighted at (1-X%) where X% is the fraction of GSD
increase. Another example of weights is the continuous
time available to observe any unique image. Unique images
that can be observed for a greater time window are more
valuable, due to increased exposure and signal to noise
ratio, so they can be weighted at Y, where Y is the number
of continuous observation seconds. We found that a large
fraction of the feasible paths are equally good if only one
heuristic was used, therefore another was added to elimi-
nate further among them.

Second, the leftover paths were compared in terms of
the minimum weighted number of opportunities left to
see the image at [p,t]. For example, two of three shown
paths in Fig. 11 see the maximum number of unique images
(four) and are shaded black. The path eliminated in step 1
is shown in grey. Among the leftover paths, the one on the
left has 20, 7 and 1 opportunity remaining to see its unique
images later, and the one on the right has 5, 10 and 7
opportunities remaining to see its unique images later.
The DP algorithm eliminates the path on the right because
the path on the left has the smallest opportunity remaining
to see one its images. The second heuristic favors the less
frequently seen images. Since the algorithm simulates in
consecutive time steps and greedily captures the best possi-
ble path until then, the optimum schedule over any time
period is available by stopping the simulation at any time
step.

As the number of satellites increase, they serve as a mul-
tiplicative factor to the pointing options i.e. increase the
horizontal axis in Fig. 11. The algorithm in Fig. 10 is
expected to run as a separate thread for every satellite,
however heuristic information exchange is necessary across
the satellite loops to allow for coordinated observations.
The reasoning behind and algorithms for this exchange
are discussed in depth in Section 3.2. The proposed algo-
rithm’s time complexity is O(n(S) � n(T) � n(P)2), where
n(X) is the cardinality of set X. Thus, the complexity of
the algorithm is linear with the size of the constellation
and planning time horizon, quadratic with the discrete
pointing space and independent of the number of images
requested. Since the pointing options are strictly bounded
and not expected to increase much compared to infrastruc-
ture, images or mission duration, the proposed solution
can be assumed to be near-linear in time. The algorithm’s
space complexity is O(n(I) � n(S) � n(P)), for the worst
case scenario when all unique images have been seen by
all feasible paths. Even so, the memoization is linear and
easily handled by modern-day computers.

2.4. Optimization by mixed integer linear programming

Our problem can be formulated exactly as a Mixed Inte-
ger Linear Program (MILP). Such a formulation can be
computationally challenging to solve, but has the advan-
tage of, in contrast to heuristic methods, the ability to pro-
vide a guarantee of optimality with a solution, or bounds
on how far the solution is from optimum. As discussed in
the results below, while MILP as formulated here will be
too slow for rapid response applications, it can provide a
useful offline check on the quality of solution provided
by the DP algorithm, especially upon availability of the
DP solution as an initial condition. In addition, the capa-
bility to solve mixed integer optimization approaches has
advanced rapidly in recent years, making more problems
of this type tractable. For example, (Bertsimas et al.,
2016) outlines how software and hardware improvements
combined have enabled a factor of 450 billion speedup in
the period 1991 to 2015 for solving MILP problems.

To formulate the problem as an MILP, let ot,p,s be a bin-
ary variable which is 1 if satellite s, when pointing in direc-
tion p, captures a required image at time t, for any given
schedule. Image distortion D½p� and access A t; i; p; s½ � are
obtained as outputs from the orbits module (Section 2.1).
If Smax is the maximum number of satellites available,
Pmax the total number of pointing options available to
any satellite, Tmax the time window of the simulation in
seconds and Imax is the total number of images that can
be seen, let value be defined as the weighted sum of unique
images seen at any given time instant.

vt ¼
XSmax
s¼1

XPmax
p¼1

ot;p;s � D p½ � � at;p;s ð2Þ

at;p;s ¼
XImax
i¼1

A½t; i; p; s� 8s 2 S; p 2 P ; t 2 H ð3Þ

at;p;s is the number of images that can be seen, from an orbi-
tal feasibility perspective, given s, t and p. If the pointing
options are discretized within the limits described, at;p;s
should be either 0 or 1. The sets S, P and H are inclusive
ranges where S = [1, Smax], P = [1, Pmax] and H = [1,
Tmax].

maximize
XTmax
t¼1

vt ð4Þ

XPmax
p¼1

ot;p;s 	 1 8s 2 S; t 2 H ð5Þ

XSmax
s¼1

XPmax
p¼1

XTmax
t¼1

ot;p;s � A t; i; p; s½ � 	 1 8i 2 I ð6Þ

otþk;pi;s þ ot;pj;s 	 1

8k 2 1;C pi; pj
� �� �

; s 2 S; p 2 P ; t 2 H
ð7Þ

The MILP objective is to maximize the scalar in Eq. (4),
i.e. the total number of unique images collected over the
simulation. The constraints are enumerated in the follow-
ing equations. Eq. (5) ensures that any satellite can point
only in one pointing direction at a time. Eq. (6) forces
any image to be captured at most once, so that only unique
images are counted in the value function vt. Eq. (7) ensures
that there is sufficient time for the satellite to slew between
two pointing options, between capturing images. If any
ot;pi;s ¼ 1 (for a particular pointing option pi), then this con-
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straint confirms that no ot;pj;s (for another pointing option
pj) can be = 1 within at least k seconds, where k is the time
required to slew and stabilize from pi to pj. The time con-
straint (C) is an asymmetric 2D matrix, obtained as outputs
from the ACS module. While Eq. (7) is a group of at least
Pmax2 equations and at most max(C) * Pmax2 equations
per satellite and time step, it can be simplified by summing
across p for any ‘t + k’ because there can be only one on
zero o(s, p, t + k) by Eq. (5). This reduces Eq. (7) to Eq.
(8), which is a set of max(C) equations per P, S and H.

XPmax
pi¼1

otþk;pi;s þ ot;pj;s 	 1

8k 2 1;C pi; pj
� �� �

; s 2 S; p 2 P ; t 2 H

ð8Þ
2.5. Case studies

We present two case studies, based on narrow FOV,
space sensors, to demonstrate the utility of the above algo-
rithms to agile, small satellite constellations. The first is
derived from the Operational Land Imager (OLI) flying
onboard heritage LandSat satellite, the longest-running
enterprise for acquisition of satellite imagery of Earth.
The OLI is a pushbroom sensor with a 185 km swath
and 30 m ground sample distance (GSD). Since LandSat-
8 is in a sun-synchronous 710 km altitude, 98.2� inclination
orbit, it takes approximately 24 s to traverse 185 km in the
along track direction. The OLI (Knight and Kvaran, 2014)
takes pushbroom slices at 236 Hz and integrates these into
a single, square image tile over 30 s. The extra time over 24
s is to account for data buffering and scene-to-scene over-
lap. For the purpose of simulation, the OLI can be
assumed to have a �15� conical FOV since the ground spot
will sit cleanly within the square image tile. The simulation
also assumes that a single image capture takes less than a
second, in keeping with the fast slice rate.

OLI has a 16-day repeat and a 14-day revisit frequency.
Orbital mechanics analysis has shown that at least 14
simultaneous Landsat satellites with OLIs will be needed
to cover the global images, everyday. Increasing the FOV
three times reduces the need to four satellites, however
increasing the FOV will add more spatial distortion to
the edge pixels and complex corrections for bi-directional
reflectance distribution functions (BRDF) to the image.
Instead, if OLI-like narrow FOV sensors on a small satel-
lite constellation were commanded using our proposed
algorithms to slew their sensor over time, they would be
able to coordinately cover the required Landsat images
much faster without compromising on spatial resolution
or BRDF effects.

The locations of the Landsat images are publicly avail-
able through the United States Geological Survey’s3

Worldwide Reference System (WRS), which is a global
3 WRS-2 grid points – https://landsat.usgs.gov/what-worldwide-refer-
ence-system-wrs.
notation used in cataloging Landsat data. We imported
the locations of 16,896 land and coastal images on the
WRS-2 grid for this case study. The minimum elevation
angle at the furthest pixel measured off-nadir was limited
to 55� (view zenith 35�) to prevent BRDF complexities,
therefore the maximum off-nadir pointing angle limited
to 28�. For a 15� FOV sensor, a minimum of three concen-
tric circles of 19 pointing options were needed to cover the
FOR. Fig. 3-left’s example shows the arrangement, and
Fig. 7-left shows the slew-and-stabilize times computed
for the option transitions. We assumed a 20 kg small space-
craft with specifications, assumptions and generalizability
described in Section 2.2 for all simulations presented. The
heuristic used was to maximize the number of unique
images seen over any given time horizon. The captured
images in any schedule were weighted by [1-X] where X
= [0 0.08 0.36] for the inner, middle and outer concentric
circles of pointing options, respectively. As explained in
Section 2.3, X represents the spatial distortion caused by
off-nadir pointing. For example, the GSD of the middle
layer is 8% larger than the inner layer.

The second case study is derived from new instruments
being developed for high resolution imaging of coastal
aquatic systems and their response to climate and
anthropogenically-driven forcers. The Canadian Space
Agency is building a Coastal Ocean Colour Imager (COCI)
(Bergeron and Craig, 2017) based on the heritage Hyper-
spectral Imager for the Coastal Ocean (HICO) flown
onboard the HyspIRI satellite. COCI is expected to fly at
an altitude of 675 km with a swath of 240 km, �20�
FOV. The agile ability of small satellites to point at coasts,
while imaging, increases their coverage and also provides
more multi-angular image data needed for computing
ocean color, atmospheric properties, phytoplankton con-
centration and many other products. Imaging of coastal
targets over extended time periods also enables space-
based Fluid Lensing. Fluid Lensing (Chirayath and
Earle, 2016) is a novel mechanism where in high-
resolution, video data of shallow coral reefs is processed
and underwater reefs imaged by exploiting time-varying
optical lensing events caused by refractive distortions from
travelling surface waves. From the ACS perspective, video
data can be collected from space by tracking one image at a
time for a long duration, with a stable, high-frame rate
imager.

The United Nations Environment Program (UNEP)’s
World Conservation Monitoring Centre provided NASA
with the most comprehensive dataset of warm-water coral
reefs4 up to 2010, for the Fluid Lensing project. The data-
set contains the global distribution of shallow, underwater
coral reefs in tropical and subtropical regions, at �1 km
resolution. We uniformly sampled the dataset such that
22,718 reef locations were used as targets of interest in
the coastal case study, as shown in Fig. 12 (red). 13,172
4 UNEP Coral Reef database – http://data.unep-wcmc.org/datasets/1.

https://landsat.usgs.gov/what-worldwide-reference-system-wrs
https://landsat.usgs.gov/what-worldwide-reference-system-wrs
http://data.unep-wcmc.org/datasets/1
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images of this dataset can be accessed (blue) within the field
of regard (FOR) of the reference sensor at the reference
orbit, described in the next paragraph. The heuristic used
was to maximize the number of unique images seen over
any given time horizon, where each image was weighted
by the continuous time available to capture it. Varying
results for varying heuristics relevant to extended time
observation will be shown to demonstrate the flexibility
of the DP for many imaging mission objectives. Spatial dis-
tortion was not used in the objective function, instead we
imposed a 10% GSD distortion limit on the set up. Both
dwell time and distortion can be factored into the heuristic
as weights, if required.

We assume a 675 km altitude (COCI reference mission)
and 35� inclination for the reference orbit (corresponding
to 35.8% coverage of the UNEP images). Since all the
warm-water corals are found within 35� parallels of lati-
tude, their coverage over a 12-h simulation with the refer-
ence sensor reduces when observed by increasing
inclinations. Only 17.6% are observed at perfectly polar
inclination and 18.61% by sun-synchronous orbits. The
instrument for Fluid Lensing, tested so far on drones only,
has a very narrow FOV of less than 1�. Decoupling the
ACS module from the optimization module (Fig. 2)
enforces a minimum FOV of �3.6� for the sensor because
the time required to traverse the FOV on the ground (at
6.7 km/s of ground velocity) must be more than the time
required to slew from one pointing option to its adjacent.
If not, the satellite will not have enough time to slew and
image an off-nadir image before it loses orbital access to
that image.

A 3.6� FOV for the coastal case study is representative
of a narrow FOV and can be easily increased, for example
to 20� for COCI, without any loss in generality of the algo-
rithmic implementation. The maximum off-nadir pointing
angle is limited to �16.5� to limit the GSD spatial distor-
tion at the edge pixels to within 10% of nadir-view pixels.
Sixty six 3.6� FOV conical sensors can be packed into five
concentric shells within the given FOR, in the arrangement
shown in Fig. 3-right. Since max(C) for the 66 � 66 C
matrix is 6 s, a 40 km ground spot allows for enough slew
time. Moreover, the FOV traversal time at maximum off-
nadir is more than four seconds, therefore a one-second
time resolution in the simulation is sufficient to register
even distant accesses.

3. Results using dynamic programming

We applied the DP algorithm described in Section 2.3 to
both case studies in Section 2.5, and found a large improve-
ment in the number of unique images seen, compared to a
static sensor. The case studies are different in that the
Landsat case has globally distributed coarse images that
need to be observed with a wider sensor, while the coral
case has sparsely distributed but fine images that need to
be observed with a narrow sensor. The Landsat case is a
rapid imaging mode while the coastal case is an extended
time imaging mode, even if both are applied to global
images. They are similar in that the goal is to maximize
the required images seen in slightly different ways. We will
present the proposed dynamic programming algorithm as,
first, applied to a single satellite case and then, to a two
satellite constellation in a manner generalizable for any
satellite constellation. We highlight the sensitivity of results
and methods constellation structure, therefore the possible
limitations of DP applied to this problem. Finally, we
apply the DP algorithm to the coral case study to show
its versatility of application across targets of interest, sen-
sor types and heuristics.

Since the algorithm runs in linear time and care was
taken to minimize loops, all presented simulations ran
within a couple of hours on a MATLAB environment
installed in a Mac OS X version 10.10.5 with a 2.5 GHz
processor and 16 GB of 1600 MHz memory. Code conver-
sion from MATLAB to a low-level language like C++
ensures 10 to 100x speed up in runtime, because the rate
determining steps are the loops in Fig. 10. In other words,
scheduling two satellites for 12 h will take �20 min on a
simple laptop, ensuring efficiency within available memory
of ground processors. Section 4 will validate the results in
this section and show better performance since MILP pro-
vides a better guarantee of optimality than a heuristic-
based approach, at the cost of speed.

We acknowledge that our algorithm does not optimize
for signal to noise ratio (SNR) and that image quality
taken on rapidly steering Cubesats (weighing �40 kg) will
be subpar compared to flagship instruments like the OLI,
carried on larger platforms (weighing � metric ton). Con-
stellations of small satellites are intended to serve as com-
plements to flagship missions, not replacements (National
Research Council, 2000). Our results below show the
improvement of coverage from fixed sensors to body-
steerable sensors, assuming the same instrument quality
on both. Moreover, our algorithm allows the time step size
or image capture time to be altered, based on the mission
scenario, to allow for sufficient integration time to meet a
threshold SNR. For example, in the rapid imaging case
based on OLI, the time step is a second (Section 2.1) and
the functional OLI takes a pushbroom image every 0.004
s (Section 2.5). The ACS algorithm ensures that the imag-
ing vector is stable within 0.2� of its desired pointing direc-
tion (Section 2.2) for one full time step (1s) so that the
image can be can be captured in a stable way, thereby
allowing far more buffer over the OLI single-slice integra-
tion time (0.004 s). The capture geometry and time con-
straints can also be tailored to meet image overlap needs,
for further improvement in achievable SNR.

3.1. Single satellite case for rapid imaging

Over a full day’s worth of simulation or 86,400 s in the
Landsat case study, the FOR shown in Fig. 3-left is capable
of seeing 14,723 of the 16,896 land and coastal images on
the LandSat WRS-2 grid. Of these, 11,900 were seen using



Fig. 12. Global distribution (red) of shallow, warm water coral locations and the fraction of them (blue) that can be seen within the field of regard of a 12-
h simulation with two satellites in one orbital plane. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Example of a path (black line) between different pointing options
(X-axis) over time (Y-axis) using the dynamic programming algorithm
with no weights for distortion, for a selected 2 min of simulation time
where in 21 unique images (colors) can be seen. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 14. Histogram distribution of images when distortion weights are
added (or not) to the objective function arranged by increasing distortion
(1.0%, 2.8%, 3.36%).
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the DP algorithm, using only unique images without
weights as the heuristic in both levels of elimination. In
comparison, a maximum of 4894 images were seen using
the static, nadir viewing concept of operations and 3079
images using a whiskbroom or scanning approach, where
the sensor swung from side to side at a predetermined rate.
The proposed DP algorithm was able to cover 77.5% of the
possible images, which comprised 87% of the total data-
base. The second number (87%) can be improved by chang-
ing constellation orbits (beyond the scope of this paper) or
by increasing the FOR (constrained by maximum slew
angle). The first number (77.5%) indicates the effectiveness
of the DP algorithm, which causes the steerable satellite to
observe 2.5 times the number of images than the static
satellite case and 3.86 times than the scanning satellite case.
Fig. 13 shows the first two minutes of the simulation and
the selected schedule (X as a black solid line) that samples
across 18 of the 21 unique images possible to be observed.

Since pointing option #1 has no distortion, #2 to #7
have 8% distortion and #8 to #19 have 36% distortion, it
is obvious from Fig. 13 that to meet the goal of maximizing
non-weighted images observed, the schedule also prefers
greater spatial distortion of those images. An image quality
analysis over the full 24-h schedule showed that less than
6% of the seen images are nadir-viewing and more than
65% have maximum distortion (36% of nadir GSD). To
correct for this, image distortion was added to the heuris-
tics by weighting the seen images by a factor of (1-X%)
and opportunities left to see any image with (1+X%). If
an image is seen more than once in a schedule, the capture
with the least spatial distortion is recorded. The re-run of
the same simulation with the new heuristics found an ‘op-
timum’ schedule where more images were observed with
0% and 8% GSD distortion instead of 36%. Fig. 14 shows
the improvement in the distribution of image distortion.
However, adding distortion minimization to the heuristic
caused 11,418 unique images to be observed, instead of
the previous 11,900. As before, the nadir-pointing
approach was able to observe only 32% of the possible
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images, therefore the steering option supported by our DP
algorithm does �2.4 times better than the static option,
even with distortion factored in. In fact, a total of 9548.5
effective images (weighted by ‘1-X%’) were seen instead
of 8785.4 effective images, without the distortion factored
in. Thus, the changed heuristic improved overall image
quality.

At any time step in the simulation, there could be up to
19 feasible schedules ending at the 19 pointing options. We
found that the number of unique images across the 19 pos-
sible schedules at any time in the simulation were different
from each other by up to 35 unique images. This difference
oscillates randomly between zero and 35 in periods of
15–45 min. Distortion in the heuristic adds to the variabil-
ity, but even without it, no monotonic trends could be seen.
For example, after 23.85 h in the simulation there was no
addition of a new unique image and all schedules showed
11,900 seen. We thus reduced the simulation time to 12 h,
to reduce runtime in future demonstrations while keeping
the representativeness of the results. DP applied to opti-
mization over 12 h provided an ‘optimum’ schedule that
observed 6506 unique images and 5394.6 effective images.
Distortion weights reduced the number of effective images,
and 836, 3418 and 2253 images were observed at nadir to
off-nadir pointing, respectively. Compared to a static
pointing approach, 2.19 times more images were seen effec-
tively and 2.65 times more in total number.

3.2. Multi satellite case for rapid imaging

A two satellite constellation in the same orbital plane,
180� apart in mean anomaly was simulated for 12 h. There
were 14,164 observable images within the FOR of the two
satellites out of the total 43,200. The ‘optimum’ schedule,
as per the DP algorithm in Fig. 10, commanded indepen-
dently on each satellite as a separate thread, observed
Fig. 15. Comparison of number of images seen using simple Nadir Pointing (
10,847 unique images. In comparison, 4366 images were
observed if the sensors were always pointed nadir. The pro-
posed algorithm covered 76.6% of the observable images
and showed a 148.4% improvement over the no-agility
case. The difference in coverage is apparent in Fig. 15. Agi-
lity allows the sensor to effectively expand its cross track
swath, without compromising on pixel coarseness. Instead,
if a larger FOV sensor had been used for the same focal
plane array, the effective pixels would have been larger
(aside of uniform edge distortion).

There were 2229 unique images that were common
between the two satellites’ observation schedules. Since
the DP algorithm uses a satellite’s own history to compute
uniqueness of a new image, we need to add other satellites’
histories to the heuristic to prevent redundant observa-
tions. With knowledge about the others’ schedules to deter-
mine how many unique images have been successfully
captured so far (line 11 and 19 in Fig. 10), the DP algo-
rithm can push any satellite to observe images that others
have not. The most precise way to address this to make
each path in DP, i.e. line 2 and 4 in Fig. 10 (now n(P) nodes
per satellite), a full factorial of n(P) nodes across n(S) satel-
lites. This would generate n(P)n(S) possible paths to elimi-
nate from at any time step, instead of the current n(P) �
n(S). The time complexity of this full factorial algorithm
would be O(n(T) � n(P)2�n(S)), instead of O(n(S) � n(T)�
n(P)2), therefore making it unsolvable in polynomial time
with increasing satellite numbers.

Knowledge transfer between the parallel DP optimiza-
tions across satellites could be enabled with some assump-
tions, to keep complexity at O(n(S) � n(T) � n(P)2). One
assumptive option is that, at any intermediate time, each
DP optimization thread could assume that the unique
images seen at any node is equal to those seen by that
thread’s satellite plus those seen by all possible paths by
other satellites, until that node. All possible paths for the
left) and using Agile Pointing, guided by our proposed algorithm (right).



Fig. 16. Number of unique images seen in a two-satellite constellation
where the second satellite is aware of all path possibilities of the first
(dashed line) vs. where both are aware of each other’s optimum paths
intermittently (solid line). The associated text describes these are the
second (ranked-satellite-based information sharing) and third (time-
horizon-based information sharing) options for knowledge transfer
between parallel DP threads.
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others should be considered because the optimization win-
dow is 12 h and an optimum path per satellite has not been
determined yet. We found that this approach eliminates
overlapping image captures significantly, but comes at the
opportunity cost of missing images that are assumed to
be seen, but are not. A second assumptive option is to rank
the satellites in order of the maximum to minimum images
that they are capable of seeing. Each DP thread is made
aware of all possible paths, until the present, from all DP
threads associated with higher ranking satellites. We found
that this approach asymmetrically increased the number of
images seen by the higher ranking satellites because they
performed the most unconstrained or greediest optimiza-
tion – dashed lines in Fig. 16. A third (fairer) assumptive
option would be to make all DP threads aware of the opti-
mum schedule (X in Fig. 2) of all others after fixed time
horizons. Fig. 16’s solid lines show the unique images
observed by each satellite over time using this approach.
The second option observed 11,076 unique images in total
excluding 1363 repeats, i.e. a 39% drop in repeated images
compared to the no-knowledge-transfer case. The third
option observed 11,027 unique images excluding 1410
repeats, for a time horizon of three hours. While it would
appear that the second is a better option than the third,
the latter is positively sensitive to constellation structure
Table 3
Results of the proposed algorithm on the 2-sat constellation simulation where a
made aware of images seen by the optimum schedule/path of all others every

X Unique Images seen Repeat images (not counted)

6 h 10,948 1751
3 h 11,027 1410
1.5 h 11,137 1018
45 min 11,430 0
and time horizon, as well as ensures a fairer distribution
of collected images. After 12 h, the satellites observed
5379.5 and 4834.6 effective images respectively, with
ranked-satellite-based sharing of information (Fig. 16-
dashed), and 5046.6 and 5153.3 effective images respec-
tively, with time-horizon-based sharing of information
(Fig. 16-solid). Moreover, the difference in number of
images captured by the satellites in the constellation
increases linearly over time of simulation or planning hori-
zon, for ranked-satellite-based sharing of information.

Finding the right time horizon is a conflicting trade.
While the different DP threads corresponding to different
satellites should know the other’s optimum images as fre-
quently as possible to avoid repeats, each DP thread should
also have as long a time horizon as possible for global opti-
mization. In a satellite mission scenario where our pro-
posed algorithm will take into account expected satellite
states and image requests, shorter time horizons will
improve the accuracy of both due to more frequent injec-
tion of information. State information can be updated
using state of health telemetry or ground surveillance of
satellites, which is then used to propagate orbits for future
expected states. The satellites can also let known which
requests have been actually fulfilled for more accurate
estimates of the two heuristics (line 19 and 20 in Fig. 10)
within the algorithm.

To demonstrate sensitivity to the time horizon of opti-
mization, Table 3 shows the increase in unique images
observed and the decrease of repeated images within
decreasing horizon length (X). In comparison, of 14,163
unique images possible to be seen with the FOR of 2 satel-
lites, 10,847 were seen without any information sharing (i.e.
X = 12 h) and 4366 were seen without any agile pointing. It
is clear that more frequent exchange of optimum paths
allows for better optimization and a limit is reached at
45 min of horizon. Shortening windows beyond this limit
did not impact results because, as seen in Fig. 15-right, con-
secutive orbits do not have overlapping FOR swaths. An
image within a satellite’s FOR can be seen again by the

same satellite only after the Earth rotates entirely under
the orbit. For the Landsat orbit at given FOR, this takes
approximately a week. Therefore, unless the simulation
window is more than a week long (unlikely for low Earth
orbit planning), the single-satellite DP algorithm optimizes
for the best path only within twice its FOR. However, an
image within a satellite’s FOR can be seen by another satel-
lite in the constellation. Since the described constellation
satellite’s path is optimized every X hours, and each satellite’s optimizer is
X hours.

Improvement from no agility Improvement from X = 12 hrs

150.7% 0.9%
152.5% 1.6%
155% 2.7%
161.8% 5.4%
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has two satellites phased out by 180� in the same orbit, this
opportunity comes at least 45 min later. The multi-satellite
DP can behave like a single-satellite DP until this point
because there are no potential common images to optimize
around. The best schedule generated by DP using the
above inter-thread knowledge sharing approach, was able
to observe 8999.48 effective images, which is more than
twice the effective images (4366) by fixed view, nadir
pointing.

3.3. Sensitivity to constellation size and clustering

The time horizon for knowledge sharing is a balance
between optimization across possible pointing paths for
any satellite thread and knowledge sharing across all these
threads. As mentioned in Section 3.1, the difference in the
number of unique images across possible paths decreases
with time, therefore there is little gain for computationally
choosing among those paths over a long horizon. For the
2-sat constellation, the common images across all possible
paths till any node increases quickly with time, i.e. the
paths become less unique, and starts flattening after an
hour. The images not common across the paths oscillate
at less than 40, so the difference in images seen for a partic-
ular schedule vs. another, after 45 min is not very different
(<5%) than after 12 h. Since there is no scope of potential
path overlap between the two satellites in those 45 min due
to the orbital constraints described earlier, that time hori-
zon is a good balance between the conflicting objectives
for the 2 satellites phased at 180� on one orbital plane.

For a 4-sat Walker constellation where all satellites are
in the same plane (cheapest launch manifest), the uniform
inter-satellite phasing is 90�. Polar images will be visited
four times an orbit i.e. every �20 min, therefore knowledge
sharing should ideally occur every 20 min. Fig. 17 shows
the number of unique images that are common across all
possible paths (19) per satellite as a fraction of the total
Fig. 17. Fraction of common images across all possible paths to any node
(i.e. pointing option and time step) at different simulation times.
unique images seen, as the simulation proceeds. The
Fig. shows only the first hour because, beyond that, more
than 95% of the unique images seen are the same across
all possible paths, irrespective of cross-thread knowledge
sharing. However, the paths are not very unique 20 min
into the hour because of one satellite (#3 as a yellow line),
whose number of common images across its 19 pointing
options is less than 75% of the total. Significant difference
between the paths implies significant room for optimization
by DP on #3’s thread. While 45 min for two satellites was a
good cutoff, a 20 min horizon may not be a long enough
time for finding an optimum solution for four satellites.
Table 4 shows the improvement in unique images observed
and reduction in repeated images with more frequent inter-
thread exchange. As expected, exchanges every 22 min
ensures no repeats. Comparing to Table 3, the improve-
ment over the control case with no agile pointing is less
for the 4-sat (49.63%) than the 2-sat constellation
(161.8%). Adding more satellites to a single orbital plane
of a constellation adds diminishing marginal utility, irre-
spective of agility. However, the DP algorithm at best
observed 80.7% of the images within their field of regard
(11,430 of 14,164) when applied to two satellites and
95.2% (14,779 of 15,509) when applied to four satellites.
Adding satellites not only increased the accessible images,
but also the fraction of them observed.

As the number of satellites in a constellation or cluster-
ing between satellites increase, the potential revisit time for
any image by a satellite becomes shorter and ideal horizons
may be too short for the DP optimization. Ranked-satellite
knowledge sharing is a possible approach, however it will
not perform well for any region that all satellites can access
near simultaneously, but not observe completely on their
own. For four or more satellites, we propose a strategy that
is a combination of full factorial path optimization at O(n
(t) � n(P)2�n(S)) and single path optimization at O(n(t) � n
(P) � n(S)). We divided the simulation period T into
unequal time horizons (t, where

P
t ¼ T ) corresponding

to when the images of interest can be observed by ns satel-
lites (ns 2 ½1; nðSÞ]). The horizons when the images are
accessible by any one satellite were optimized using the
DP algorithm with no knowledge sharing across DP
threads because no overlaps are expected. Horizons (t)
when images are accessible by two or more satellites (ns)
were optimized by eliminating from a full factorial n(P)ns

possible paths, instead of the n(P) loops in line 2 and 4 in
Table 4
Results of the proposed algorithm on a 4-sat constellation simulation
where in a satellite’s path optimization is for every X hours and each
satellite is made aware of the images seen by the optimum schedule/path of
all others every X hours.

X Unique Images
seen

Repeat images
(not counted)

Improvement
from no agility

3 h 14,038 10,400 42.13%
45 min 14,594 3929 47.8%
22 min 14,779 0 49.63%



Fig. 18. Percentage distortion of GSD over time, as the reference sensor at
675 km approaches and recedes from any target, limited by the maximum
allowed off-nadir angle.
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Fig. 10, per satellite and per time step. The length t should
be long enough for the heuristic difference between the pos-
sible paths to drop below a threshold. For example, it took
30 min of a time horizon, for all possible paths to be at
most 10% different from each other, for the four satellite
case. Nonetheless, these horizons t are expected to be short
with low ns, thus divergence from linear time due to expo-
nential complexity O(t � n(P)2�ns) can be handled without
a large computational load.

3.4. Multi satellite case for extended time imaging

The coastal case study has a denser concentration of
image locations than the Landsat case, however very spar-
sely distributed globally. The distance between image loca-
tions is �11 km, therefore there can be more than a dozen
images within a circular swath at 3.6� FOV. The UNEP
database was downsampled 10x to avoid hundreds of
images within the FOV, which would have added computa-
tional needs for no added benefits to demonstrate the pro-
posed algorithm. Downsampling any further would risk
underestimating coastal access because their distribution
is not as uniform as WRS-2.

This case study will be used to demonstrate the applica-
bility of the DP algorithm to different mission objectives
(therefore heuristics) and requested images. We show only
results from a two satellite constellation at 675 km altitude
35� inclination, 180� apart in mean anomaly. All results
described in the Landsat case are applicable here, unless
mentioned otherwise. For example, frequent information
sharing across the satellite threads is not necessary because
the orbital mechanics module found no overlapping images
between the two orbits in 12 h. The unique image sets can
be attributed to lower FOR than before and the lack of
polar overlaps due to a low latitude area of interest.
Nonetheless, leaving the 45-min sharing window as is, is
computationally efficient because there are a large number
of common images across the competing paths per satellite
(akin to >1 h statistics in Fig. 17). Owing to the redun-
dancy in optimizing for long periods and that COCI/Fluid
Lensing needs daytime images only, the simulation time
was reduced from 12 to 6 h. Reducing further would not
affect results or efficiency of the DP algorithm, but 6 h
serves as a decent time period for comparing results across
different heuristics, allowing 9923 of the 22,718 coral
images in the downsampled UNEP database to be
accessed. If more satellites were to be added or the constel-
lation structure were to change, the appropriate time win-
dow can be computed or a hybrid method used, as
described in Section 3.3.

Extended imaging of coastal regions entails imaging as
many unique images as possible but also, more impor-
tantly, image them for as long as possible to allow image
acquisition at multiple angles for COCI and longer video
frames for Fluid Lensing. Larger off-nadir angles allow
for more imaging time but also cause more distortion at
the edges, as seen in Fig. 18. For this case study, we limited
the maximum look to 16.2�, corresponding to at most 10%
distortion and a minute of total imaging time. BRDF-
related complexities can be assumed negligible because
these are more conservative constraints than the Landsat
case. When the weights used in Fig. 10’s heuristics are
‘sum of maximum continuous time over all seen, unique

images’, 5706 unique images are observed over 21,600 s
of simulation. These images are observed for between one
to ten seconds, continuously at best. In comparison, 1147
images are observed for one to seven seconds, continuously
at best, when no agile pointing is used. As seen in Fig. 19
(brown histogram), the best continuous time available for
observing all images in the no-agility case is almost uni-
form because the images that fall within a satellite’s static
FOV, as the Earth rotates under it, can be assumed ran-
dom. In contrast, the blue histogram has nearly five times
more unique images but they are seen for a lower, average
continuous time (2.3 s vs. 4.3 s) across all images. The DP
approach still sees more images per imaging duration than
the control case.

The obvious drawback of the above DP heuristic which
maximizes the product of image number and time, is that
there is no preference for extended imaging or selecting
images for which extended imaging is possible. If the objec-
tive is to maximize the data per image, the first level heuris-
tic can be modified to the ‘maximum continuous time spent
in observing any image’, as an average across all seen,
unique images. Unlike the previous heuristic, this one does
not try to maximize the observed unique images. However
the second level heuristic does give preference to paths with
minimum opportunities left to see any image, just as
before. When the modified first level heuristic is used over
6 h of simulation, 28 images are observed for at best 8 to 41
continuous seconds each. Fig. 19-right shows the modified
(blue) histogram for the simulation results with the chan-
ged heuristic. Since there is no preference for observing



Fig. 19. Histograms of continuous imaging times for all unique images seen, when unique images weighted by ‘maximum continuous time any image is
seen’ is used as heuristic [left, blue] vs. when ‘maximum continuous time per unique image seen’ is used as heuristic [right, blue]. The brown bars [left]
correspond to the control case with no agility. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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more images, the algorithm avoids observing any images
which cannot be seen long enough to better the average
observation time, resulting in forty times less images in
the schedule. Instead, the algorithm maximizes the access
interval for getting as much angular and/or video data as
possible (average 26.4 s) and all the images are captured
for longer than any in the no-agility case.

There are several ways to address both (or more) objec-
tives used as first-level heuristics in Fig. 19 – number of
unique images, distortion, continuous observation time.
One, the Lagrange multiplier method can be used where
the heuristic in the DP algorithm is a weighted sum of both,
in several levels if one level does not cause sufficient elimi-
nation. The weights would be a function of the importance
of either objective and the need to scale their values to the
same order. For example, the first level heuristic values for
the optimum schedule, at the end of the simulation for
Fig. 19 – left and right were 1292 and 27 respectively.
Unless scaled, the two orders of difference in magnitude
will hamper the relative utility of increasing one, as per-
ceived by the DP algorithm. Second, a hybrid, time-
dependent heuristic can be used in a scheduling re-run,
after computing the optimum schedule with changed
heuristics, where 28 images are observed for extended dura-
tions. In the re-run, the DP algorithm with original heuris-
tics can be used to compute the schedule for periods of time
between those extended 28 observations. The hybrid
approach is feasible because the first schedule spends less
than 15 min in 6 h slewing and observing the said 28
images, allowing for plenty of downtime for capturing
more images, even if for non-maximum durations. Third,
a convex function can be used as a heuristic, which forces
the number of unique images seen to be higher than a
required threshold (for example, 1147 for the nadir point-
ing case) before maximizing observation duration per
image. Results from the above case studies demonstrated
that the DP algorithm allows for multiple, non-linear
heuristics over multiple levels, enabling optimization over
a vast number of mission requirements.

4. Verification using integer programming

We implemented the MILP formulation of Section 2.4
using the General Algebraic Modeling System (GAMS),
with subsequent solution by the CPLEX 12.7 solver. The
model was solved on the Stanford Sherlock Computing
Cluster using the 16 threads of a dual socket Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60 GHz (8 core/socket)
with 64 GB RAM. The full problem comprises 9 million
constraints and over 800,000 binary variables, with Eq.
(7) being the major source of rows, necessitating high
RAM availability. The solution required tuning of
CPLEX, including the custom setting of tolerances, and
the use of an interior point algorithm for both the initial
linear relaxation solve and the subsequent MILP subprob-
lems also. For this problem, the interior point algorithm
was found to have the best performance relative to alterna-
tives such as the simplex algorithm. The efficient use of
threading by the interior point method can provide it with
an advantage on large problems, that offsets the disadvan-
tage of not being able to conduct warm starts on the sub-
problems. Further tuning and harnessing of the problem
structure could yield more efficient formulation or a set
of CPLEX tuning parameters that enable faster solution
of the MILP.

Importing an initial solution from the DP implementa-
tion allowed the MILP search space to be greatly
decreased, reducing solve time and allowing us to focus
on the purpose of MILP here – an assessment of the quality
of the DP solution. Table 5 illustrates results from the first



Table 5
MILP results for first 45 min of simulation (after taking 15.5 h of solution
time on the Stanford Computing Cluster).

MILP DP

Objective Value 818.43 779.23
Best possible bound 864.7
Number images captured 930 917
Images at increasing distortion 207, 546, 177 135, 528, 254
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45 min of simulation in the multi-satellite rapid imaging
case study (Landsat). The objective value represents the
sum of the images captured, weighted by distortion (Eq.
(2)), as termed ‘effective images’ in Section 3. The best pos-
sible bound represents, at the time of solution, the theoretic
bound on what the maximum achievable value could be.
This bound allows an assessment of the quality of a MILP
solution. Further running of the MILP problem allows the
optimality gap to be closed by either increasing the objec-
tive value i.e. finding better solutions, or reducing of the
best possible bound i.e. revising the bound estimate.

We see that MILP quickly finds an improved objective
value of 818.43 compared to DP’s 779.23, and shows that
no integer solution can exist with an objective value greater
than 864.7 i.e. 5.65% better than the found solution. MILP
was able to improve upon the number of images observed
by the DP schedule, and schedule more images to be
observed at 0% and 8% distortion (207 vs. 135 and 546
vs. 528 respectively), therefore better image quality. How-
ever, it took the DP algorithm a minute to find its pre-
sented schedule on a Mac 2.5 GHz processor @ 1.6 GHz,
16 GB RAM and is expected to take negligible time on
the on the Stanford Computing Cluster, and the MILP
algorithm took 15.5 h to find its presented schedule. While
the DP solution is 4.79% less in quality to the found MILP
solution and 9.88% to the best possible bound, it can be
reached more than three orders of magnitude faster and
without the need of an initial estimate. The MILP simula-
tion also confirmed that image quality notwithstanding, the
DP schedule can observe within1.5% of the optimum num-
ber of images for any given satellite.

Comparison of solutions for the full 12-h simulation
provides a sense of the quality for the constellation sched-
ule. Due to the large scale nature of the 12-h problem with
current formulation and implementation, we generated
only a relatively crude upper bound by solving the linear
relaxation of the MILP problem within 16 h of runtime
on the Stanford Computing Cluster. DP’s best schedule
showed an objective value of 8999.48, which is 22.56%
lower than the best possible bound generated by MILP
(11,622). Due to the large memory requirements of the full
problem, MILP found a solution 3% better than DP’s solu-
tion – objective value of 9294 and total images at 11,396
(compared to DP’s 8999.48 and 11,400 respectively).
1182, 5836, 4378 images were observed by MILP at
increasing distortion, compared to 750, 5905, 4776 images
by DP over 12 h. The results show that MILP improves the
quality of the solution far more due to improved image
quality (fewer images with more distortion), than due to
the improved number of images seen. While the DP solu-
tion is 22% less optimal in the 12-h case than the 45-min
case, 22.56% represents the worst-case optimality gap
because the bound is expected to improve with computa-
tion time and refinement of the implementation.

5. Summary and future work

This article proposed a simple, modular framework for
scheduling the attitude control operations for a constellation
of small satellites to maximize the observation of requested
images around the globe. The orbital mechanics and ACS
modules can be simulated independently, as a function of
satellite and image request specifications, and their outputs
applied to a DP algorithm and the solution schedule
improved upon by the MILP algorithm. Independence of
the different modules allows for numerical simulation and
uncertainty modeling within each, therefore ensuring higher
fidelity than an idealized, analytical approach.

The DP-based algorithm for agile constellations applied
to rapid imaging observed more than 2.5 times the images
compared to constellations with no agility. Images
observed can be increased by intermittent exchange of
optimum schedules between the optimization threads per
satellite. The algorithm applied to extended imaging
observed more than nearly five times the number of unique
images or six times the observation time per image,
depending on the heuristic used, compared to the static
sensor case. As shown through two case studies of ground
point targets and sensor characteristics, the framework is
applicable to any Earth imagery and a few degrees or
higher FOV sensors. Our proposed framework of decou-
pling satellite dynamics from optimization and the DP
algorithm applied to this framework is generic enough to
be applied to changing mission objectives, orbits, constella-
tion structure, satellite number, images locations or sensor
characteristics. The MILP implementation showed that the
DP solution is within 10% of the true optimum, and
reached it in a computationally efficient manner (3–4
orders of magnitude faster than MILP) for each satellite’s
optimization thread. Also, the number of images seen by
the DP schedule was 1.5% less than the MILP schedule.
Since the DP algorithm is structured in a way such that
the solution at any given simulation time step is the opti-
mum till that time step, a schedule over any time period
can be compared to MILP for verification. The MILP algo-
rithm provides bounds on the optimum solution for a time
period, even if it does not find the optimum schedules in
finite time. For the 12-h simulation, the worst case optimal-
ity gap for the DP schedule was found to be 22.56%.

The presented results are an initial step in exploring the
capabilities that state-of-the-art commercial ACS systems
are enabling in Earth observation by small satellites. The
modularity of our proposed framework allows for the inclu-
sion of many complex space–time constraints to image
selection and schedule, such as avoiding images covered by



912 S. Nag et al. / Advances in Space Research 61 (2018) 891–913
time-dependent cloud cover (Orbits module), avoiding
image collection during ground station downlink windows
(Orbits module), ACS constraints for full-body alignment
of solar panels for charging at the same time as imaging
(ACS module), adding duty cycle upper limits if power is
tight (Optimization module), scheduling for inter-satellite
calibration or any other nominal mode operations (Opti-
mization module). A more complex orbits module, such as
one that outputs illumination conditions to be used as ima-
gery constraints, or a more complex ACS module, such as
one that includes uncertainty characterization as a function
of momentum wheel limitations or position/attitude knowl-
edge error,may also be introduced.One can also explore bet-
ter solutions to the presented problem using improved
MILP, other optimization formulations and a more inte-
grated ACS-scheduling optimization, perhaps at the cost
of computational efficiency. For example, in orienteering,
each image at a given time will have neighborhood of n(P)
� n(P) nodes representing the transition pairs and the
reward per node would be the same as the heuristics pro-
posed in this paper.

The proposed framework and algorithms can be inte-
grated with constellation design software such as NASA
GSFC’s TAT-C to assess the full potential of any design,
given currently capable agile satellites. The scheduling
framework proposed can be integrated with other
schedulers and applied to a diversity of existing assets such
as unmanned aerial vehicles (UAVs) or research balloons.
In keeping with NASA’s Sensor Web approach, such
scheduling will help optimize operations of many flying
platforms by leveraging their positives – spatial resolution
and local targeting by UAVs, long distance access by bal-
loons, global access by satellites – and enable more respon-
sive remote sensing. The presented framework can be
adapted for running onboard the satellite for autonomous
scheduling, contingent on onboard processing capability,
and if the satellites can propagate their states accurately
for a short time horizon and communicate their states with
all other satellites, within the same horizon, with or with-
out relay (both technologies are currently under develop-
ment for small spacecraft). This will allow satellite
clusters to make schedules in flight without ground-in-
the-loop, based on image observation requests and their
states, and enable more autonomous remote sensing.
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