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Abstract 

Interferometry relies on the constructive and destructive interference of electromagnetic 

waves from sources at two or more vantage points at different times. For InSAR, the 

interference pattern is constructed from two complex-valued synthetic aperture radar 

images, and interferometry is the study of the phase difference between two images which 

can be inverted to give surface topography and ground displacements. Synthetic aperture 

radar (SAR) data were collected over the San Francisco Bay Area by the European Space 

Agency (ESA) using the ERS-1 and ERS-2 spacecraft from 1992 to 2000 in 46 epochs. The 

data are time series of surface displacements for different latitude-longitude values. Two 

sections: The Santa Clara Valley and the Loma Preita region have been chosen for specific 

analysis due to the proven transient phenomena observed in both the regions. Identification 

of seasonal variations, DC offsets and separating them from tectonically caused variations is 

done using functional analysis and principal component analysis. Frequency related 

components are separated, frequency content evaluated using Emperical Mode 

Decomposition and the seasonal modes assessed. Modeling of the Loma Preita section is 

initiated via Kalman Filtering using a 2 fault model, one reverse and one strike slip near the 

SAF zone. Green’s functions are calculated using Okada’s technique and random walk 

probabilistic parameters determined. The slip histories on faults thus found via the Network 

Inversion Filter are dependent only on tectonics and results may be checked with those from 

the previous tools. 

 

Key words: InSAR, San Francisco Bay Area, Loma Preita, Santa Clara, Principal Component 

Analysis, Empirical Mode Decomposition, Hilbert Spectrum, Kalman Filtering, Network 

Inversion Filter. 
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The time series obtained from InSAR is very valuable in showing the variation of 

displacement over long periods of time and thus slowly varying transient phenomena. 

Examples of such processes with respect to the San Francisco Bay area are: 

1. Seasonal hydrologic, land subsidence processes (e.g., Schmidt, D. A., and R. 

Bürgmann (2003), Time dependent land uplift and subsidence in the Santa Clara 

valley, California, from a large InSAR data set, Journal of Geophysical Research, 108, 

doi:10.1029/2002JB002267.)  

2. Time dependent landslide motion (in the Berkeley Hills, but also east of San Jose) 

that appear to accelerate depending on pore-pressure variations (e.g., Hilley, G. E., R. 

Bürgmann, A. Ferretti, F. Novali, and F. Rocca (2004), Dynamics of slow-moving 

landslides from permanent scatterer analysis, Science, 304, 1952-1955.)  

3. Transient fault slip events on creeping faults in the region including the Hayward, 

Calaveras and San Andreas faults (we know there was a Feb. 1996 slip event on the 

southernmost Hayward fault as well as slip events on the San Andreas at the very 

edge of the data set we are looking at, but do not know if there is more time 

dependence to slip on these faults otherwise). 

4. A very slowly decaying late-stage postseismic relaxation from the 1989 Loma Prieta 

earthquake (e.g., Segall, P., R. Bürgmann, and M. Matthews (2000), Time dependent 

deformation following the 1989 Loma Prieta earthquake, Journal of Geophysical 

Research, 105, 5615-5634.). There may well be other time-varying aspects to the 

surface deformation and/or complexities to the processes mentioned that the data 

may or may not reveal. 

 

InSAR has been used to model subsidence, seismic relaxation and volcanic deformation ever 

since it was conceived. As candidate sites for the first two, our aim is to concentrate on 2 

regions of the Bay Area – the Santa Clara Valley region and the Loma Prieta region 

(discussed in detail later). Identification of transients is done via: Principal component 

Analysis, Functional Fitting and Empirical Mode Decomposition. We intend to separate out 

the time series in different components and modes depending on the property that the  
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Figure 6a: Annotated map of the San Francisco Bay Area showing the various transient positions occurring 

and their spatial locations. Figure courtesy PS Technique - Sar data processing Final Report Date: 

04/06/2008 Tele-Rilevamento Europa. 
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Figure 6b: Number of days vs the epochs at which the satellite took its readings 

 

 

 

Figure 7: Velocity field of the San Francisco Bay area found by interpolation from the scattered data 

available. The uninterpolated version is superimposed on the map in Figure 6. The units are in mm/year. 
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technique concentrates upon. According to the interpretations made by the same, we will 

model the region’s tectonics using the Network Inversion Filter. The previous approaches 

directly explore the data for "real" time dependent components without knowledge or 

assumptions of what the underlying process is. We want to find "real" time dependent 

deformation features and resolve their spatio-temporal distribution as best as we can from a 

massive data set of noisy and sparse time series data. GPS results for some of the processes 

are available to check for correlation with our InSAR results. 

 

Synthetic aperture radar (SAR) data were collected over the San Francisco Bay Area by the 

European Space Agency (ESA) using the ERS-1 and ERS-2 spacecraft. We chose to limit the 

number of interferograms used in the analysis to those with small perpendicular baselines 

(<200 m) to ensure that errors imposed by topography remain small. Interferograms are 

produced using the Repeat Orbit Interferometry Package (ROI PAC) developed at the Jet 

Propulsion Laboratory and the California Institute of Technology (JPL/Caltech). SAR data 

are processed using 8 looks in range and 40 looks in azimuth resulting in a pixel width of 

roughly 150 m. A weighted power spectral density filter and an adaptive filter are applied to 

each interferogram [Goldstein and Werner, 1998]. Processing parameters were chosen to 

counter temporal decorrelation in those interferograms spanning several years while 

maximizing resolution. [11] Topography is removed from each interferogram using a 30 m 

U.S. Geological Survey (USGS) digital elevation model (DEM) and an evaluation of the 

elevation model suggests that imposed errors are negligible. A DEM of the Bay Area derived 

from the Shuttle Radar Topography Mapping (SRTM) mission was not available at the time 

that the interferograms were processed. Upon the recent release of the SRTM data a 

comparison was performed with the USGS DEM. A 50-km-wavelength signal with 

maximum peak-to-trough amplitude of 2.7 m was found in the residual between elevation 

models for the flat, urban regions of the bay area. However, the analysis of tandem ERS 

InSAR data (1-day interferograms) suggests that this anomalous signal originates from the 

SRTM data set. A 2.7 m elevation change would translate to 1 mm in range change for a 
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perpendicular baseline of 100 m. Therefore errors imposed on the interferograms from the 

USGS DEM are likely to be <1 mm.  

 

The final processed data comprises: Universal Mercator coordinates of each data point 

location, standard deviation of the average velocity of the point, phase coherence measure of 

the same (as defined in Ferretti et al. 2000 paper and Colesanti et al., 2002), mean range-change 

rate with respect to reference pixel and the range/displacement time series at each epoch 

from May 1992 through 2000.  

 

 

Figure 8a: Loma Prieta region (-122.66 to -121.75 degrees east, 36.916 to 37.33 degrees north) – plot of 

the GPS velocity field scatter with  points on Quaternary substrate (that may experience non-tectonic, 

seasonal deformation) and the contribution of background horizontal motions removed.  
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Data specifications are as follows: 

Range = -20 to 20 mm 

2.7 lakh points 

Time spacing = 30-60 days (6th May 1992 – 9th December 2000) 

No of time samples = 46 

Resolution = 1.5 km 

Area dimension = 19072 sq. km 

No. of PS points = 217561 

8 looks in range, 40 looks in azimuth 

Repeat orbit ~ 35 days 

 

 

 

Figure 8b: Scatter plot of the InSAR PS data points within the Loma Prieta region chosen for our analysis. 

Since there were above 10000 points we downsampled the data by averaging the values within boxes of 0.1 

degrees by 0.1 degrees. 
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Figure 8c: Postseismic velocity vectors 

Figures courtesy Burgmann et al, JGR 1997 

SAF slip rate = 20-35 mm/year, right lateral 

This value along with the fields shown in the above figures justify the values in our InSAR dataset 
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Figure 9a: Land subsidence observed from 1934 to 1960 reproduced from Poland and Ireland [1988, 

Figure 19] using GPS data collected by the National Geodetic Survey. Subsidence contours (thin lines, 

irregular intervals) are in units of m, dashed where poorly controlled. Santa Clara valley region we used 

ranged from -121.833 to -122.33 degrees east and 37.25 to 37.5 degrees north. Figures Courtesy 

Burgmann and Schmidt, JGR 2002. 
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Figure 9b: Scatter plot of the InSAR PS data points within the Santa Clara region chosen for our analysis. 

Since there were above 10000 points we downsampled the data by averaging the values within boxes of 0.1 

degrees by 0.1 degrees.  

 

3.1. PRINCIPAL COMPONENT ANALYSIS 

 

PCA is a very good first approach for this analysis as it considers the "modes" of spatial and 

temporally patterns in deformation data that can be related to individual deformation 

processes. For some of processes we are interested in exploring/detecting in our own data, 

this seems applicable; including landslide motion, coastal sediment settling, first-order effects 

from groundwater level changes, seasonal land subsidence, and postseismic relaxation.  

 

3.1.1. Theory and applicability to triangulation networks 

Savage 1994 resolved the observed deformation of a trilateration network into a 

superposition of modes by means of principal component analysis. Let Li be the length of a 

segment averaged over time and Lij the length of the ith segment at the jth time. If we define 

Dij = Lij - Li, then 
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where k = mode number 

Aik = participation of Ai th segment in the kth mode 

Ck = participation of the Cj th time slot in the kth mode 

One technique to do this is by finding the best fit curve to the first mode is evaluated and 

stripped off from the data, the curve for the second mode fitted, and so on. The total error 

is calculated as the sum of squared residuals and is given as: 

 

 

 

The paper found linear dependence of the first mode of the temporal factor with respect to 

time and sinusoidal variation in the spatial factor with respect to azimuth. Thus it could not 

identify any long-term coherent deformation pattern other than a linear trend. Typical 

geodetic measurements of deformation consist of repeated surveys of a particular geodetic 

network. Such deformation data can be interpreted as a consequence of one or more self-

coherent sources by means of principal component analysis. A self-coherent source is 

defined as any source that produces deformation that is time and space separable. Principal 

component analysis then gives the time and space factors that characterize the deformation 

attributed to each self-coherent source. Geodetic measurements of deformation at Long 

Valley caldera provide two examples of the application of principal component analysis. A 

40-line trilateration network surrounding the caldera was surveyed in midsummer 1983, 

1984, 1985, 1986, and 1987. Principal component analysis indicates that the observed 

deformation can be represented by a single coherent source. The time dependence for that 

source displays a rapid rate of deformation in 1983-1984 followed by less rapid but uniform 

rate in the 1984-1987 interval. The spatial factor seems consistent with expansion of a 

magma chamber beneath the caldera plus some shallow right-lateral slip on a vertical fault in 

the south moat of the caldera. An independent principal component analysis of the 1982, 

1983, 1984, 1985, 1986, and 1987 leveling across the caldera requires two self-coherent 

sources to explain the deformation. The deformation pattern produced by the larger of these 

two sources appears to be roughly consistent with that found from the trilateration data. The 
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deformation due to the second source is a nearly uniform tilt in the uplift profile. 

Presumably, that tilt is simply an artifact of systematic error in the leveling. 

 
Clearly, a big challenge is that various noise source can also be systematically correlated in 

space and time. PCA also known as orthogonal functional analysis is no more than singular 

value decomposition given by Aubrey and Emery. 24A]. PCA is mathematically defined as 

an orthogonal linear transformation that transforms the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on. PCA is theoretically the optimum transform for a given data in least 

square terms. PCA can be used for dimensionality reduction in a data set by retaining those 

characteristics of the data set that contribute most to its variance, by keeping lower-order 

principal components and ignoring higher-order ones. However, depending on the 

application this may not always be the case.  

 

3.1.2. Singular Value Decomposition  

For a data matrix, XT, with zero empirical mean (the empirical mean of the distribution has 

been subtracted from the data set), where each row represents a different repetition of the 

experiment, and each column gives the results from a particular probe, the PCA 

transformation is given by: 

 

 

where V Σ WT is the singular value decomposition (svd) of XT. PCA has the distinction of 

being the optimal linear transformation for keeping the subspace that has largest variance. 

This advantage, however, comes at the price of greater computational requirement if 

compared, for example, to the discrete cosine transform. In our case, Y is the spatially 

dependent factor and X the temporally dependent, both orthogonal to each other and hence 

mutually independent. 
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3.1.3. Results and Interpretation for Loma Prieta  

PCA successfully showed the expected spatial variation in the Loma Prieta region. As is seen 

from Figure 10c, the maximum amount of contribution comes from the first mode after 

which the modes oscillate about zero, provide negligible contribution and are similar to each 

other. Since the order of points in the scatter plot in Figure 8b is in ascending lat-long and 

not a particular azimuth, we plotted the parameter values interpolated onto a lat-long grid 

for better visualization of the results. The maximum contribution map is shown in Figure 

10a. The NE corner sector has a relative downthrow with respect to the SW sector of the 

map and is three times the order of magnitude. The sectors are separated by the Loma Prieta 

fault shown in Figure AB. The results correlated perfectly with the GPS findings of the 

region in the scatter map of Figure 8a with respect to the location throws as well as the 

magnitude. The third mode hardly has a contribution and is anticorrelated with mode 1. The 

temporal parameter has similar contribution from the 5 modes plotted. All modes show a 

significant decrease in signal around epoch 15 which is about 4.5 years after the beginning of 

  

Figure 10a: Mode 1 of the spatial factor of Loma Prieta. 
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Figure 10b: Mode 3 of the spatial factor of Loma Prieta. 

 

Figure 10c: Spatially dependent parameter with respect to data points on the scatter plot in Figure 
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Figure 11: Temporal factor of Loma Prieta with respect to number of epochs (46 in 8 years) 

 

 

Figure 12: Sum of squared residuals of the Loma Prieta PCA Analysis 

data collected and thus a bit over 6 years since the Loma Prieta earthquake. This could be 

interpreted as post-seismic relaxation. A functional analysis is done later to check for the 

same. 
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3.1.3. Results and Interpretation for Santa Clara 

 As was above, the maximum amount of contribution comes from the first mode after which 

the modes oscillate about zero, provide negligible contribution and are similar to each other. 

Since the order of points in the scatter plot in Figure 9b is in ascending lat-long and not a 

particular azimuth, we plotted the parameter values interpolated onto a lat-long grid for 

better visualization of the results. The maximum contribution map is shown in Figure 13a. It 

shows a clear partition of uplift in the SW and subsidence in the NE via a NW-SE trending 

lineage which we know from previous studies to be the position of the Silver Creek Fault.   

Such a partitioning is seen in the GPS derived contours of Figure 8a too. The third mode 

hardly has a contribution and is anticorrelated with mode 1. The temporal parameter has 

similar contribution from the 5 modes plotted and does not give much information. This 

could be because the deformation with respect to time of the two sides of the partition are  

 

Figure 13a: Mode 1 of the spatial factor of Santa Clara 
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Figure 13b: Mode 3 of the spatial factor of Santa Clara 

 

Figure 14: Temporal factor of Santa Clara with respect to number of epochs (46 in 8 years) 
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Figure 15: Sum of squared residuals of the Santa Clara PCA Analysis 

 

quite different and hence when PCA is done on the entire area, it averages out. There are a 

large number  oscillations in the modes, though, which could be seasonal and functional 

analysis proves so later. 

 

3.2. FUNCTIONAL FITTING  

 

3.2.1. Theory and significance of the simple mathematical terms 

 

Time series data can be simplified as a summation of simple functional components. Freed 

et al. 2006 were interested in the cumulative surface deformation for the 2-year period 

following the 2002 earthquake (November 2002 through November 2004). Using two 

complete years enables us to estimate and remove annual and semiannual signals within the 

GPS data. To constrain the temporal dependence and specially to understand the 

contribution of transients and seasonal factors, we model site positions as the sum of (1) a 

linear term representing secular elastic strain accumulation, (2) a logarithmic term 

representing postseismic deformation, (3) an annual and semiannual periodic term 

representing seasonal effects not modeled in the GPS data  analysis, and (4) DC offsets due 

to equipment changes or problems at the site. The model  equation is: 
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   y = a*sin(2*pi*t) + b*cos(2*pi*t) + c*exp(t/T) + d*t + e  

 

where a, b, c, d, e and T are estimated by inverting the site position data y using least mean 

squares estimation. The logarithmic term in equation is a convenient means of 

parameterizing time-dependent postseismic deformation. Although the data can be well fit 

by this model, we do not ascribe a physical significance to the estimated model parameters 

or predictive power to the overall model. They use this approach only as a curve-fitting 

convenience to remove nontectonic effects (seasonal variations and DC offsets) and 

estimate displacement uncertainties.   

We used a regression model to determine the coefficients. A regression model is a linear one 

when the model comprises a linear combination of the parameters, i.e. 

 

 where the coefficients, φj, are functions of xi, the input variable and β are the 

coefficients to  be determined. Letting 

 

We can then see that in that case the least square estimate (or estimator, if we are in 

the context of a random sample),  is given by 

 

A different technique called orthogonal regression or total least squares model with either 

QR decomposition or SVD may also be used. 

 

3.2.2. Results and Interpretation for Loma Prieta 

 

The time series of PS point  -121.75E, 37.141N – a region on surface above the Loma Prieta 

fault and functional fitted according to model equation on. The coefficients inverted for 

have values A = -1.1605,B = -0.4033, C = 7.4925, D = -0.0172, E = -0.1691. Evidently, C  
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Figure 16a: Functional fit according to model equation on the time series of PS point st -121.75E, 

37.141N – a region on surface above the Loma Prieta fault. Figure 16b: Pure log curve fitted to the time 

series. 
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i.e. the logarithmic coefficient has the maximum contribution significantly greater than the 

others. We thus fitted a pure log curve to the time series to find T or the logarithmic 

relaxation factor according to the model equation. The value comes to be 4 years. This is in 

agreement with the relaxation time from our PCA analysis too and also strengthens the clain 

that this is a viscous seismic relaxation signal. In theory, such a decrease can be explained by 

by either the viscous relaxation of a ductile (asthenospheric) layer underlying an elastic 

(lithospheric) plate, or by the downward propagation of aseismic slip along a lower crustal 

extension of the fault zone. It could be a fault creep as Shallow creep typically decays 

exponentially within a few years of the earthquake [Smith and Wyss, 1968; Bilham, 1989]. 

Continued monitoring of the transient deformation will provide valuable information about 

mechanisms of time-dependant deformation following a large earthquake and its effects on 

neighboring faults (SAF, Hayward, Calaveras,  LP, etc). 

 

3.2.2. Results and Interpretation for Santa Clara 

 

Since the Santa Clara Valley and aquifer is partitioned around the Silver Creek Fault and 

show substantially different deformation patterns. To understand the time dependence for 

both the regions separately we picked one PS point -121.92E, 37.35N on the SW of the fault 

and one  PS point st -12.84E, 37.39N on the SW of the fault. Functional fit according to 

model equation on the time series of the first gives A = -69.0669, B = 2.6883, C = 14.6155, 

D = -0.0055, E =-0.1992 and the second gives A =  -18.51 37, B =  0.4915, C = 6.7686, D = 

-0.0097, E =-0.2025. The figures are normalised forms. The dominant term very noticably is 

A i.e. the sine term which confirms the strong seasonal character of this region albeit via 

uplift and subsidence in different sectors. The InSAR time series reveals an overall pattern of 

uplift since 1992 centered north of Sunnyvale. Most of this uplift occurs between 1992 and 

1998. The reasons can be due to poroelastic response, inelastic deformation  to groundwater 

pumping and/or aquifer expansion as discussed in Bawden et al, Nature 2001 and Schmidt and 

Burgmann, JGR 2002. The south west part is strongly seasonal and a pure sin-cos curve can 

be fitted on it. 
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Figure 17a: Functional fit according to model equation on the time series of PS point st -121.92E, 37.35N 

on the SW of the Silver Creek Fault. Figure 17b: Functional fit according to model equation on the time 

series of PS point st -12184E, 37.39N on the SW of the Silver Creek Fault. 
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3.3. EMPERICAL MODE DECOMPOSITION  

 

Empirical Mode decomposition and Hilbert-Huang Transform are used for stationary signals 

to separate them out into various frequency components. These components are called 

intrinsic mode functions (IMFs) and the algorithm is called sifting.  The essence is to identify 

the IMFs by time scales, which can be defined locally by the time lapse between two extrema 

of an oscillating mode or by time lapse between two zero crossings of such a mode. The idea 

then is to extract for each mode locally the highest frequency oscillations. To compute also 

the frequency behavior of each IMF in time, Huang proposed to use instantaneous 

frequency of each IMF. For this we have to endure that each is symmetric with respect to its 

local mean, otherwise unwarranted fluctuations will occur. In some sense they can be seen as 

adaptive wavelet decompositions. Each IMF then replaces the detail signals. It is a fully data 

driven method and does not use any pre-determined filter or wavelet functions. 

 

3.3.1. Theory and Algorithm 

 

A new nonlinear technique, referred to as Empirical Mode Decomposition (EMD), has 

recently been pioneered by N.E. Huang et al. for adaptively representing nonstationary 

signals as sums of zero-mean components. 

 Given a signal x(t), the effective algorithm of EMD can be summarized as follows : 

  1. identify all extrema of x(t) 

  2. interpolate between minima (resp. maxima) ending up with some   

   envelope emin(t) (resp. emax(t)) 

  3. compute the mean m(t) = (emin(t)+emax(t))/2 

  4. extract the detail d(t) = x(t) − m(t) 

  5. iterate on the residual m(t) 

The above procedure has to be refined by a sifting process which amounts to first iterating 

steps 1 to 4 upon the detail signal d(t), until this latter can be considered as zero-mean 
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according to some stopping criterion. Once this is achieved, the detail is referred to as an 

Intrinsic Mode Function (IMF), the corresponding residual is computed and step 5 applies. 

By construction, the number of extrema is decreased when going from one residual to the 

next, and the whole decomposition is guaranteed to be completed with a finite number of 

modes. The decomposition is based on the assumptions: (1) the signal has at least two 

extrema|one maximum and one minimum; (2) the characteristic time scale is defined by the 

time lapse between the extrema; and (3) if the data were totally devoid of extrema but 

contained only inflection points, then it can be differentiated once or more times to reveal 

the extrema. Final results can be obtained by integration(s) of the components. The essence 

of the method is to identify the intrinsic oscillatory modes by their characteristic time scales 

in the data empirically, and then decompose the data accordingly. A complication is that the 

envelope mean may be different from the true local mean for nonlinear data; consequently, 

some asymmetric wave forms can still exist no matter how many times the data are sifted. 

We have to accept this approximation. 

 

3.3.2. Intrinsic Mode Functions and the Hilbert Spectrum 

 

An intrinsic mode function (IMF) is a function that satisfies two conditions: (1) In the whole 

data set, the number of extrema and the number of zero crossings must either equal or differ 

at most by one; and (2) It any point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero. Theoretically,  there are 

infinitely many ways of defining the imaginary part, but the Hilbert transform provides a 

unique way of defining the imaginary part so that the result is an analytic function. Given the 

complex trace, the phase of the signal can be found and the instantaneous frequency is 

defined as differential of the phase with respect to time. The components of the EMD are 

usually physical, for the characteristic scales are physical. Nevertheless, this is not strictly 

true, for there are cases when a certain scale of a phenomenon is intermittent. Then, the 

decomposed component could contain two scales in one IMF component. Therefore, the 
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physical meaning of the decomposition comes only in the totality of the decomposed 

components in the Hilbert spectrum.  

 

Having obtained the intrinsic mode function components, we will have no difficulties in 

applying the Hilbert transform to each component, and computing the instantaneous 

frequency. After performing the Hilbert transform on each IMF component, we can express 

the data in the following form: 

 

Here we have left out the residue, rn, on purpose, for it is either a monotonic function, or a 

constant. The final representation may also be written as:  

 

Although the Hilbert transform can treat the monotonic trend as part of a longer oscillation, 

the energy involved in the residual trend could be overpowering. In consideration of the 

uncertainty of the longer trend, and in the interest of information contained in the other 

low-energy and higher-frequency components, the final non-IMF component should be left 

out. It, however, could be included, if physical considerations justify its inclusion. The above 

equation gives both the amplitude and the frequency of each component as functions of 

time. The same data if expanded in Fourier representation would be 

 

with both aj and !j constants. The contrast between the two equations is clear: the IMF 

represents a generalized Fourier expansion. The variable amplitude and the instantaneous 

frequency have not only greatly improved the efficiency of the expansion, but also enabled 

the expansion to accommodate non-stationary data. With IMF expansion, the amplitude and 

the frequency modulations are also clearly separated. Thus, we have broken through the 

restriction of the constant amplitude and  fixed-frequency Fourier expansion, and arrived at 
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a variable amplitude and frequency representation. This expression is numerical. If a 

function is more desired, an empirical polynomial expression can be easily derived from the 

IMFs. The integral equation also enables us to represent the amplitude and the instantaneous 

frequency as functions of time in a three-dimensional plot, in which the amplitude can be 

contoured on the frequency-time plane. This frequency{time distribution of the amplitude is 

designated as the Hilbert amplitude spectrum, H(ω; t), or simply Hilbert spectrum. If 

amplitude squared is more desirable commonly to represent energy density, then the squared 

values of amplitude can be substituted to produce the Hilbert energy spectrum just as well.  

 

3.3.5. Results and Interpretation for Santa Clara 

 

EMD is especially useful here because the region has proven regional character. Two time 

series were considered, again on two sides of the Silver Creek Fault. The decomposition 

extracts the high frequency or rapidly changing components first and then the next. Thus a 

range of frequencies can be explored one mode at a time. The Hilbert Spectrum shows a 

decrease in frequency values as the number of IMFs increase. For each mode, the time at 

which maximum amplitude content occurs and what frequency it occurs at is important in 

delineating the times at which that particular frequency mode becomes more dominant. 

Thus that seasonal phenomena can be constrained in time as well.  

 

This technique could probably be more suitable for data with spectral/frequency aspects 

(such as the functional, wind, tide, and earthquake wave examples given) than the very sparse 

in time series we are exploring, in which we attempt to resolve time dependence that is 

coherent between enough points to be representing a real process. The simpler functional or 

principal component methods we previously discusses may be more directly applicable in 

that case. However, rather than just following potentially imperfect precedent, we are trying 

to explore the different responses of the data to all these techniques before settling on one 

analysis. We always have to keep in mind that it is a non-trivial problem to pull out the kind 

of transient processes we are interested in out of the data we have available.   
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Figure 18a: Time series on the subsiding side of the Santa Clara Valley. 

 

 

Figure 18b: IMFs extracted for the above time series and instantaneous frequency of the IMFs extracted. 
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Figure 18c: Hilbert Spectrum for each of the IMFs extracted. 

 

 

Figure 19a: Time series on the subsiding side of the Santa Clara Valley. 

 



Page 29 of 42 
 

 

Figure 19b: IMFs extracted for the above time series and instantaneous frequency of the IMFs extracted. 

 

Figure 18c: Hilbert Spectrum for each of the IMFs extracted. 
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3.4 NETWORK INVERSION FILTER 

 

The NIF as developed assumes knowledge of the  mechanical source of deformation 

(generally fault slip as assumed in all applications of the method to date) and maps 

deformation data to time/space varying model parameters (slip rate and distribution).  It 

tries to separate aspects in the data that appear to be due to the coherent contributions from 

this model from other time varying factors such as seasonal periodic and reference frame 

errors. The previous approaches directly explore the data for "real" time dependent 

components without knowledge or assumptions of what the underlying process is. We want 

to find "real" time dependent deformation features and resolve their spatio-temporal 

distribution as best as we can from a massive data set of noisy and sparse time series data.   

 

4.1. Theory and use of Kalman Filtering 

We model displacements at the Earth’s surface ur(x,t) as a function of spatial co-ordinate x 

and time t by: 

                    

The three terms on the right side of (1) represent the underlying deformation signal, local 

benchmark motion, and measurement error respectively. It is assumed that true deformation 

can be adequately represented by some spatially and temporally varying displacement 

discontinuity, or slip s(ξ,t) across one or more planar fault surfaces in a homogenous, 

isotropic, elastic half space. Deformation at depth below the seismogenic zone, may in fact 

be distributed across a fault zone of finite width, in which case the slip approximates the 

integrated strain across the fault. Although our focus here is on fault slip, opening mode 

sources (dikes) can be treated with the same procedure. We have not attempted to model 

distributed volume or pressure sources at this point. In (1) p,q,r, = 1,2,3, summation on 
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repeated indices is implied, and nq(ξ) is unit normal to the fault surface ∑(ξ). The Gpq(x,ξ) 

derivatives of the elastostatic Green’s tensors [e.g. Aki and Richards 1980]. We take the 

measurement errors to be normally distributed with a covariance matrix that is known (for 

example from the GPS data processing), at least to within a scalar factor σ^2. There has been 

considerable discussion as to the appropriate stochastic model for local benchmark motions. 

We take the local motions to be Brownian with scale parameter τ  

 

Where dw is formal white noise. Note that 2 has unit 2 /length time . Other non-tectonic 

processes such as subsidence due to large scale fluid withdrawal or extensive landsliding, are 

not well modeled by random benchmark motions and should be treated separately. We take 

the estimated slip to be a linear combination of spatial functions B(x): 

 

Where m is the number of basis functions included in the estimates.  Substituting the model 

for slip (3) into (1) yields 

 

If the network contains n station with coordinates xn, n=1,2,…..N the 3xN displacement 

components can be collected in a data vector d, 
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Where wm(t) are independent white noise process with variance 2 . L here represents the 

seasonal parameters which can be removed according to prior analysis.  Integrating (8) twice 

with respect to time yields: 

 

Where we assume without loss of generality that cm(t=0)-0, that is, we measure accumulated 

slip from the time of the first observation. W(t) is integrated random walk, with scale 

parameter α 

 

Where 2  has unit of 2 3/length time  

3.4.2. Double Fault model for Loma Prieta 

 

The 2 fault model proposed by Burgmann et al in 1997 required 2 dislocations to fit the data. 

The first corresponds to the Loma Prieta rupture and the second is a southwest dipping 

reverse thrust fault in the Foothills zone north of San Andreas. much of the deformation is 

best explained by relatively shallow sources above 15 km depth. Our preferred model 

involves contemporaneous oblique-slip and thrust faulting at high rates on two faults with 

similar strikes. The dip of the first fault is not tightly constrained and we can not clearly 
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differentiate if slip occurs on the SAF or the Loma Prieta rupture. However, we find that 

fault slip extends to very shallow depths, suggesting that faulting took place up-dip of the 

Loma Prieta fault. The inferred slip on the SAF or Loma Prieta fault may represent creep 

above, or between, the two high-slip asperities that released most of the earthquake moment 

[Beroza, 1991; Hartzell et al., 1991; Wald et al., 1991; Arnadottir and Segall, 1994; Horton, 1996]. 

The Foothills thrust belt has been active in the Quaternary and experienced shallow 

triggered slip during the Loma Prieta earthquake [Haugerud and Ellen, 1990; McLaughlin, 1990]. 

Our model thrust fault appears to coincide with the Berrocal fault zone, but it is possible 

that postseismic slip is distributed between several faults in this complex thrust system. Focal 

mechanisms of M ≥ 2.5 Loma Prieta aftershocks, located NE of the SAF near the Berrocal 

fault zone, indicate that these events occurred predominantly on reverse faults (Figure 13). 

The seismicity near the Loma Prieta rupture on the other hand is very complex with all types 

of fault plane solutions [Oppenheimer, 1990; Beroza and Zoback, 1993]. 

 

3.4.3. Green’s Function estimations 

 

We use the equations in section 3.4.2 to estimate the slip on the 2 fault model. ‘n’ is the 

normal to the fault plane. L = random benchmark errors are estimated by the identification 

techniques discussed earlier. Since the transient phenomenon can be constrained and 

removed, what remains is the displacement due to the tectonic setting only. B are the Basis 

functions evaluated due to each fault patch for each slip direction, namely strike and dip. C  

is evaluated using random walk (discussed later) with parameter alpha , tau, sigma. To 

evaluate G or the green’s functions, we use the code according to Okada 1985 for surface 

displacements due to tensile and shear faults in homogenous, elastic half space. 3 comp G at 

each of the PS ground data points is found, given the 2 fault model, due to each fault source 

discretized in patches. So, the motion is again resolved into a spatially varying term (B*G*dA 

: from the discretized fault patches + PS point positions) and a temporally varying term (C: 

from random walk components + data). For better resolution, we selected 12 as the number 

of basis functions for dip and strike slip. Hence total basis functions to be determined was 
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24 for each fault..  Also, each of the faults was discretized into a 12 by 7 grid, hence 168 fault 

elements in all. The results for the basis functions are shown in Figure 19. 

3.4.4. Random Walk Model  

This is a probabilistic estimation to determine the parameters alpha, gamma, tau and sigma 

that when fed into the network filter return the temporal factor C.  

 

 

Figure 19: Two Fault Model for Loma Prieta proposed by Burgmann et al, 2000 
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Figure 19a: 12 basis functions for the strike-slip part of Fault 1discretized into 7 by 12 patches 

 

 

Figure 19b: 12 basis functions for the dip-slip part of Fault 1discretized into 7 by 12 patches 
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Figure 19c: 12 basis functions for the strike-slip part of Fault 2discretized into 7 by 12 patches 

 

 

Figure 19d: 12 basis functions for the dip-slip part of Fault 2discretized into 7 by 12 patches 
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The hyperparameters are determined via maximum likelihood method.  Log likelihood is 

given by  

 

Where The parameter vector   has components 2 , 2  and 2 . The pK on the RHS 

represents the probability density function (selected as the Gaussian in our case) such that 

the values on the LHS fit the given data. Iterating over random parameters in order to 

maximize likelihood or probability helps us thus find the parameters. First τ is determined  

as the value for which -2*log(likelihood) becomes the minima. Using this value of τ , a 

contour plot of -2*loglikelihood is made. The minimum valley in the plot indicates the value 

of α and Υ for which it is obtained. σ  has been normalized to 1 for simplicity purposes. The 

results are shown in Figure 20. Final values obtained are : τ = 0.02, σ = 1, α = 3.54, Υ = 7.24. 

Log is taken in order to bring the pdf in product form: 

 

 

 

 

Figure 20a: Log Likelihood plot to determine tau. 
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Figure 20b: - -2*LogLikelihood plot with respect to alpha, gamma and sigma after determining tau 

 

3.4.5. Slip Estimation on Faults 

 

Once the basis functions and C is found out as above, from the equations on section 3.4.1., 

slip rate can be estimated by a linear combination of the two at any epoch. To summarize, 

each of the basic vectors for a fault are multiplied with the time/epoch dependent parameter 

c(i) where I = number of basis  functions, and all the 24 contributions are summed to give 

the total slip on that fault. This is determined for each of the 168 fault patches. The entire 

algorithm is done once for the strike slip component and once for the dip slip component. 

The results are shown in Figure 21. The slip rate of the same region estimated by Network 

Inversion of GPS data in Segall et al 2000 is shown in Figure 22. For Fault 1, the results show 

a significant match but for Fault 2, although the values are within the same order, the shape 

of the curves and the magnitude of error are high. The advantage of the kalman filter is that 

once the source is discretized into basis functions, the value of slip at any epoch can be 

determined by supplying new data from the stations, by a simple linear summation. In this 

project, we have downsampled the data continuously. Using the full dataset and if possible 
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more InSAR data could improve the results of slip. The inherent advantage of the Filter 

makes this modification convenient, given data. 

 

 

 

 

Figure 21a: Fault 1 slip parameter. Figure 21b: Fault 2 slip parameters 
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Figure 22: The slip model proposed by Segall at al 2000 

 

3.5. SUMMARY AND DISCUSSION 

 

Synthetic aperture radar interferometry is an imaging technique for measuring the  

topography of a surface, its changes over time, and other changes in the detailed 

characteristics of the surface. By exploiting the phase of the coherent radar signal, 

interferometry has transformed radar remote sensing from a largely interpretive science to a 

quantitative tool. Coherently combining the signals from two antennas, interferometric 
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phase difference between the received signals gives the geometric path length difference to 

the image point, which depends on the topography. Repeat pass over the same ground point 

at same antenna orientations give the surface displacement of that point over that period of 

time. The data is thus, time series of surface displacements of the San Francisco Bay Area 

and north across the Central Valley. We concentrated on (1) the time dependent land 

uplift/subsidence in the Santa Clara valley, California due to its strong seasonal character 

and (2) very slowly decaying late-stage postseismic relaxation in the Loma Prieta region since 

the 1989 earthquake.  

 

Identification of the transients is done via functional fitting, Principal Component Analysis 

and Empirical Mode Decomposition. PCA at the Santa Clara region confirms that the NW-

SE trending Silver Creek Fault divides the underlying aquifer into a region of subsidence and 

a region of uplift.  For Loma Prieta, a total downthrow on the east of the San Andreas fault 

of three times the magnitude of upthrow on the west is calculated. The temporal factor 

shows a relaxation of the time series from 1993. In both cases, the first mode shows the 

maximum contribution and both match the GPS results obtained for the regions. Functional 

fitting confirms that Loma Prieta’s signal is dominated by a logarithmic fit well above the 

sinusoidal and linear terms. The logarithmic relaxation period is calculated to be 4 years, 

which agrees with PCA. This can be explained by the viscous relaxation of a ductile 

(asthenospheric) layer underlying an elastic (lithospheric) plate. Functional fit on the west of 

the Silver Creek Fault showed uplift (mostly between 1995 and 1998) and on the west 

showed subsidence, both having very large coefficients of sinusoidal variation. This confirms 

the seasonal dominance of tectonics in the region. Previous work has attributed this 

phenomenon to inelastic deformation due to groundwater pumping and aquifer expansion. 

Lastly, EMD decomposes select traces into intrinsic mode functions by extracting the 

highest frequency signal, one at a time. This is applied to Santa Clara (due to its inferred 

seasonal character) and the Hilbert Amplitude Spectrum for the traces is made. The 

frequency content of each IMF, for each time sample, can thus be calculated for better 

evaluation of the seasonal character. 
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Modeling of the transients is done using the Network Inversion Filter. The NIF as 

developed assumes knowledge of the mechanical source of deformation  and maps 

deformation data to time/space varying model parameters (slip rate and distribution). It tries 

to separate aspects in the data that appear to be due to the coherent contributions from this 

model from other time varying factors such as seasonal periodic and reference frame errors. 

The Loma Prieta region is modeled using a 2 fault model inverted from GPS data. The slip 

on the fault is resolved into a spatially varying term (Basis and Green’s functions from the 

discretized fault patches and PS point positions) and a temporally varying term (from 

random walk components and data-dependent). The filter hyperparameters are determined 

by the maximum likelihood technique and the final slip calculated compared with previous 

GPS results. 

 

InSAR is thus a very powerful tool to examine transient, slowly varying processes such as 

creeps, volcanic deformations, subsidence and seismic relaxations. Mathematical techniques 

applied to two such processes near the San Andreas fault have been studied and compared. 

 

 

 

 


