
Acta Astronautica 180 (2021) 489–506

Available online 4 December 2020
0094-5765/© 2020 IAA. Published by Elsevier Ltd. All rights reserved.

Prototyping operational autonomy for Space Traffic Management

Sreeja Nag a,*, David D. Murakami b, Nimesh A. Marker c, Miles T. Lifson a,
Parimal H. Kopardekar b

a NASA Ames Research Center and Bay Area Environmental Research Institute, CA, USA
b NASA Ames Research Center, CA, USA
c NASA Ames Research Center and Stinger Ghaffarian Technologies, Inc., CA, USA

A R T I C L E I N F O

Keywords:
Space debris
Space traffic
Decision making under uncertainty
Trajectory optimization
Spacecraft management

A B S T R A C T

Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and
collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x
increase in active spacecraft population in less than 10 years, nor does it support automated maneuver planning.
We present a software prototype of an STM architecture based on open Application Programming Interfaces
(APIs), and drawing on insights from NASA’s architecture for low-altitude Unmanned Aerial System Traffic
Management. The STM architecture is designed to provide structure to the interactions between spacecraft op-
erators, various regulatory bodies, and STM service suppliers, while maintaining flexibility of these interactions
and the ability for new market participants to enter easily. Autonomy will be an indispensable part of the
proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight
operations (e.g. select spacecraft maneuvers to prevent impending conjunctions between multiple spacecraft).

The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and
deployed in industry-standard virtualized containers, facilitating easy communication between different par-
ticipants or services. The system architecture is designed to facilitate adding and replacing services with minimal
disruption. We have implemented some example participant services (e.g. a space situational awareness/SSA
provider, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype.
Different services, with creative algorithms folded into them, can fulfill similar functional roles within the STM
architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to
entry of new players in the STM marketplace.

We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable space-
craft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on
a pre-defined reward function. Such tools can intelligently search the space of potential collision avoidance
maneuvers with varying parameters like lead time and propellant usage, to optimize a customized reward
function, and be implemented as a scheduling service within the STM architecture. The case study shows an
example of autonomous maneuver planning using the API-based framework. As satellite populations and pre-
dicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to
collision prediction and mitigation among various service applications on different platforms and servers. The
availability of such an STM network also opens up new research topics on satellite maneuver planning, sched-
uling and negotiation across disjoint entities.

1. Introduction to STM architecture

As outer space becomes increasingly congested with satellites, due to
miniaturizing hardware, cheaper launches, more automated operations,
entry of emerging economies and proposed large LEO constellations, the
active satellite population in Low Earth Orbit (LEO) is expected to grow

from ~1000 to over 16000 in 10–20 years [1–3]. The increased popu-
lation will be susceptible to greater risk of physical collision with each
other or debris, radio-frequency interference, space weather, lasers and
directed energy impacts, and thus have the potential to create more
debris exponentially (Kessler Syndrome). While large and active satel-
lites are GPS-enabled and propulsion-controlled, small satellites rarely
have propulsion and not all have GPS cards. Clusters of small satellites or

* Corresponding author.
E-mail addresses: sreeja.nag@nasa.gov, david.d.murakami@nasa.gov (S. Nag).

Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/actaastro

https://doi.org/10.1016/j.actaastro.2020.11.056
Received 18 May 2020; Received in revised form 22 November 2020; Accepted 28 November 2020

mailto:sreeja.nag@nasa.gov
mailto:david.d.murakami@nasa.gov
www.sciencedirect.com/science/journal/00945765
https://www.elsevier.com/locate/actaastro
https://doi.org/10.1016/j.actaastro.2020.11.056
https://doi.org/10.1016/j.actaastro.2020.11.056
https://doi.org/10.1016/j.actaastro.2020.11.056
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2020.11.056&domain=pdf

Acta Astronautica 180 (2021) 489–506

490

massive derelicts thus pose major risks [4]. There are more than 19000
resident space objects (RSOs) greater than roughly 10 cm in size, being
currently tracked in Earth orbit. With the U.S. Space Fence expected to
be operational soon, better surveillance of RSOs down to 5 cm is planned
[5] and even 1–2 cm may be possible [6]. Better resolution and
improved orbit determination will elicit more collision avoidance
(COLA) maneuvers for previously unavailable tracks and reduce COLA
maneuvers for previously false positive tracks.

Current space traffic coordination mainly relies on the U.S. Air
Force’s Combined Space Operations Center1 (CSpOC) to provide state
tracking and conjunction prediction emails to operational spacecraft.
COLA strategies may be vetted by injecting proposed maneuvers into the
ephemeris products supplied to CSpOC to assess conjunction mitigation.
Space agencies of some countries have customized traffic management
teams for their own satellites, e.g. NASA’s Conjunction Assessment Risk
Analysis (CARA) for NASA’s non-human spaceflight missions and the
French Space Agency CNES’s CAESAR. Such Space Traffic Management
(STM) services are centralized and cater to very specialized consumers,
therefore not scalable to 10 or 100x increases in population. Moreover,
any new STM system will have to account for existing players (CSpOC,
CARA, etc.) and players that have supported them. For example, Space
Situational Awareness (SSA) data is available from the U.S. Strategic
Command and the Space Data Center (SDC) to their members. SDC is
operated by Analytical Graphics, Inc. (AGI), a technology partner to the
non-profit Space Data Association (SDA), which is a consortium of thirty
major spacecraft operators, for-profit companies like LeoLabs, or data-
bases of individual companies like Planet Labs that volunteer their in-
formation publicly. The SDC has scaled SSA in the last decade, and has
APIs which allow new entrants to supply their data in their own native
format (i.e. a Data Lake model). STM or SSA data is exchanged using
message standards set by the Consultative Committee for Space Data
Systems (CCSDS). Even within the U.S., regulatory authority to super-
vise and license commercial space activities is split across several
agencies, e.g. NOAA for remote sensing satellites, FAA’s Office of
Commercial Space Transportation for launch and re-entry of spacecraft
and their interaction with the national airspace, FCC for regulating
communication spectrum allocation among commercial spacecraft ap-
plications. Operators are bound by domestic laws and regulations set
forth by the Federal Communications Commission (FCC), National
Telecommunications and Information Administration, Department of
State, etc. In turn, such national regulators have to account for inter-
national law (e.g. the Outer Space Treaty), non-compliant players, and

orbital debris mitigation compliance with international forums like
Interagency Space Debris Coordination Committee (IADC). Compliance
is especially difficult to enforce outside of radio regulations by the In-
ternational Telecommunication Union because no one body has regu-
latory authority over space (e.g. UN COPOUS is a deliberative body).

While groups like SDC have successfully integrated SSA data from
multiple providers, and previous studies have discussed perspectives on
the complex landscape of managing global space traffic [7], identified
preventive strategies against dangerous overcrowding of low Earth orbit
(e.g. slot based allocation of sun synchronous orbits [8]), and active
mitigation strategies for preventing collisions against debris (laser-based
orbital control [9,10]), no scalable automated solution for end-to-end
STM or Space Traffic Coordination and Management (STCM) has been
prototyped yet. As the space population scales, and conjunction alerts
against growing number of debris have to be sent to a growing number
of active spacecraft, the current system is inadequately equipped to
handle the increased workload [11] and will benefit from better infor-
mation technology. The recently signed Space Policy Directive 3 in the
U.S. supports the transition of civil STM responsibilities to a civilian
entity and provides additional guidance relevant to the development of
an STM system. The International Association for the Advancement of
Space Safety STM working group [12] and the AIAA STM working
groups [13] have begun to identify the key requirements for such a
system, as advised by academic, industry, legal and government
stakeholders.

To keep the utilization of outer space safe, sustainable and efficient,
to provide structure only when necessary and allow flexibility of oper-
ations otherwise, NASA Ames Research Center (ARC) has proposed an
STM architecture - visually represented in Fig. 1, and introduced in
detail in Refs. [14,15]. STM in this paper refers to the same concept as
STCM. The architecture is a set of defined roles, standardized open in-
terfaces (e.g. application programming interfaces/APIs), and data
models (with required and optional fields, based on CCSDS and other
industry standards), that allow automated and scalable interaction. The
defined roles are:

• Owner/Operators (O/O), who own and fly satellites participating in
the STM architecture.

• STM Service Suppliers (S3), who act as a concierge providing STM &
compliance services to O/Os, serve as a link to the broader STM
ecosystem, and procure services on behalf of O/Os.

• Space Situational Awareness (SSA) Suppliers, who are responsible
for acquiring and fusing sensor observations with cooperative
tracking data from O/Os to generate and maintain a catalog of space
objects. SSA is a key example of an STM service that currently exists
independently, therefore called out separately from S3.

Acronyms

AI Artificial Intelligence
AMA Automated Maneuver Advisor
AGI Analytical Graphics, Inc.
API Application Programming Interface
ARC Ames Research Center
CAS Conjunction Assessment Supplier
CCSDS Consultative Committee for Space Data Systems
CDM Conjunction Data Message
COLA Collision Avoidance
CSpOC Combined Space Operations Center
FAA Federal Aviation Administration
HIE High Interest Event
IADC Interagency Space Debris Coordination Committee
MDP Markov Decision Process

MSMA Multi-spacecraft Maneuver Advisor Algorithm
NORAD North American Aerospace Defense Command
O/O Owner/Operator
PoC Probability of Collision
RSO Resident Space Objects
S3 Space Service Supplier
SDC Space Data Center
SG STM Gateway
SSA Space Situational Awareness
STK Systems Tool Kit
STM Space Traffic Management
TCA Time to Closest Approach
TCL Technology Capability Level
TLE Two Line Elements
UI User Interface
UUID Universally Unique Identifier

1 CSpOC was called Joint Space Operations Center (JSpOC) until July 18,
2018.

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

491

• Conjunction Assessment Suppliers (CAS), who are responsible for
screening objects against SSA catalogs for potential conjunctions, as
well as verifying collision avoidance maneuvers proposed by S3s.

• Supplemental Data Suppliers (SDS), who provide other relevant data
and services. Examples might include precision atmospheric
modelling data to reduce errors in spacecraft orbit propagation or
space weather warnings.

The roles and responsibilities are described in functional terms
because the STM architecture makes no assumptions about the type of
actor who would provide a given service (government, non-profit, or
commercial) or regarding the separation of roles across actors. Multiple
roles might be fulfilled by a single conceptual or legal entity. For
example, a large O/O who flies many satellites might choose to act as its
own S3 or contract with an outside provider. As space traffic gets more
complex, new functions may be developed within an existing CAS or S3,
or they may contract with an outside provider. For example, if a CAS has
informed an S3 of an imminent conjunction and the S3 needs guidance
on maneuver options and trade-offs, the S3 may use their in-house
planning tools on CAS-provided data, request the CAS perform the
analysis, or request an external service (e.g. Automated Maneuver
Advisor (AMA) which automates tradespace analysis and maneuver
advice) to use their custom planning tools on S3-provided CAS data
related to the conjunction. New services added to the STM network may
even be hardware services provided by entities that do not fall into any
of the above categories (neither operators, brokers, software nor data
suppliers). For example, de-orbit services may be supplied to operators
of non-maneuverable spacecraft by external providers of such mecha-
nisms (e.g. rendezvous chasers, tethers, robotics arms, lasers, aero-
dynamic decelerators).

The STM Gateway is a management role within the proposed archi-
tecture that will handle certain basic functions like registration, dis-
covery, authentication of participants, and auditable tracking of data
provenance and integrity. This open-access architecture allows any user
to join the system, after reliable authentication, and be discoverable as a
new participant by a centralized registry of participating entities or
various decentralized discovery techniques. We can thus accommodate

users ranging from small academic Cubesats to proposed mega-
constellations with thousands of satellites, while addressing their
customized needs for communications, interoperability, regulation, and
protection of proprietary data. The APIs and data models present a low
barrier to entry for new or existing STM actors and/or services. As long
as these interfaces are followed, STM is expected to serve as a non-
hierarchical marketplace for services that can accommodate future
regulatory requirements, and integrate data from multiple sources,
providing information to those who need it to behave responsibly, while
being responsive to source-imposed restrictions on sharing. Decentral-
ization also implies that new nodes can be added scalably, and common
standards allow software developed for one supplier to be reused and
interoperate with another.

We have deployed a research platform within a simulation lab at
NASA Ames. The goal is to visualize, assess, and validate our proposed
STM architecture and performance under increasingly complex use
cases, grouped into technical capability levels (TCL). The TCLs provide
an evolutionary path to implement a software prototype of the proposed
STM architecture and its application to groups of use cases. Our STM
prototype is based on modern micro-service architecture adhering to
OpenAPI standards and deployed in industry-standard Docker con-
tainers,2 facilitating easy communication between different participants
or services. Automation and autonomy will be indispensable in the
efficient implementation of the architecture and its services. Automation
in STM includes syncing multiple catalogs of resident space objects [14],
while autonomy examples include rapid communication or negotiation
between operators and cost-benefit trade-offs for spacecraft maneuver
selection to prevent impending conjunctions between multiple active
spacecraft. This paper describes the prototype and its application to
on-orbit operations for a collision avoidance and maneuver planning use
case, per civil/commercial catalogs. Once development is complete, the
intention is to open source the platform code to enable use and further
development by all stakeholders interested in participating in an STM

Fig. 1. Space Traffic Management architecture proposed by NASA Ames Research Center, as detailed in Ref. [14,15]. The Concept of Operations (ConOps) is based
on NASA’s successful UAS Traffic Management architecture that has been developed in partnership with the FAA.

2 Docker is a set of platform as a service products that use OS-level virtual-
ization to deliver software in packages called containers.

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

492

ecosystem, as well as eventual transition to the appropriate regulatory
agency for use in operations.

2. Software prototype of the STM architecture

The STM software prototype implements the ConOps of our proposed
architecture (Fig. 1) in successive TCLs, similar to the manner in which
NASA’s UAV Traffic Management (UTM) software prototype [16] was
developed. UTM refers to the system that can integrate unmanned aerial
vehicles (UAVs) safely and efficiently into air traffic that is already flying
in low-altitude airspace, so that they do not interfere with helicopters,
airplanes, nearby airports or even safety drones being flown by first
responders helping to save lives. UTM is currently being handed to the
FAA for operational use via the NASA UTM Research Transition Team
that was formed to ‘collaboratively explore concepts, develop pro-
totypes, and demonstrate a possible future UTM system to enable
large-scale low altitude UAS operations’ [16]. Borrowing insights from
UTM’s success, the proposed STM ConOps is aimed to integrate existing
vehicles and new orbital entrants safely and efficiently into the space
above the Von Karman Line.

We used the iterative Software Development Life Cycle (SDLC) pro-
cess to develop the STM prototype. SDLC’s phases included creating a
detailed plan for our requirements analysis, definition, product design,
architecture, development, testing and deployment. This section pre-
sents our implementation of the system software based on the proposed
STM architecture (each role is an ‘application’) and describes the func-
tional elements and their interactions using activity diagrams and API
structures. A prototype implementation is demonstrated from the front
end perspective (for all roles in Section 1) in the following video:
https://sreejanag.github.io/Videos/AmesSTM_demo_2019.mp4

The STM architecture requires applications (S3, STM Gateway, CAS,
SSA) to interact as loosely coupled services, making the microservices
architectural pattern a strong fit for STM implementation. Microservices
allow the construction of small independently versioned and scalable
customer focused services with specific business goals which commu-
nicate with each other over standard protocols with well-defined in-
terfaces. As the services are independently deployable and scalable, each
service also provides a firm module boundary. Other benefits of
microservices have been listed in Appendix A.

2.1. STM software stack

The STM software stack is an implementation of our proposed STM
architecture, intended to provide the basic functions (yellow box in
Fig. 1) and serve as a portal to allow seamless interaction of roles and
services (green boxes in Fig. 1). It was designed to be simple, highly
extensible and modular, while utilizing as much open source technology
as possible. The main components of the stack are listed below, and the
selected technology used for each component italicized. The public
software developer ecosystem was studied to choose stack technologies
(comparison and selection described in Appendix B) which would be
easy to implement, and is well supported by a reputable open source
community.

User Interface (UI) webpages have been developed for the STM
gateway (SG) and S3. The SG UI currently supports basic functions of
registration and discovery, providing capabilities for STM managers to
manage and verify interfaces between S3-CAS-SSA. The current S3 UI
supports O/O registration, setting up screening requests to the CAS, and
displaying results from the CAS. We selected Angular 5, a modular and
extensible web and UI development framework to provide capabilities
such as notifications, integration with web exchange protocols. For the
web server technology, we chose Express due to its extensive routing
features including routing, separating handlers (put, get, post, etc),
static file serving, and a framework that many popular template engines
can plug into.

Application Program Interfaces (APIs) are an effective interface

mechanism to share functionality amongst independent applications/
programs while maintaining code separation. STM APIs have been
developed to provide interfaces to CAS, SSA, S3 and SG, using simple
http protocols. Our requirements for API were to develop a door/inlet
into each service (CAS/SSA/S3/SG), allowing other programs to
securely interact with it without the need to share any code. Node. JS, a
Javascript-based runtime environment that remains lightweight and
efficient in the face of data-intensive real time applications, was chosen
as the preferred API framework. We use SwaggerHub, an API develop-
ment platform that leverages the core capabilities of the open source
Swagger framework to build, document, manage, and deploy the STM
APIs.

Databases (DB) were created for storing user authentication and
authorization, storing requests, responses and configuration details. Our
requirements from a DB were a simple setup, to be Docker friendly (to
deploy easily, as described in Section 2.2), allow JSON-like binary data
points (BSON). MongoDB was chosen as the database technology
because it met the said requirements in a scalable and flexible way. It is
open source, document-based, and can change streams to push updates
across and from various service providers and STM roles.

To summarize the prototype implementation of functions and roles
within our proposed STM architecture: SG and S3 have been developed
in Angular (UI) and Express (web server). Their sequence diagrams and
functions will be explained further via the use case in Section 3. The
example CAS has been developed in MATLAB and Analytical Graphics,
Inc’s Systems Tool Kit (STK) software, and its structure is described in
Ref. [17]. Its utilization for complex maneuver planning will also be
explained further via the use case in Section 3. The example SSA draws
primarily from the space-track.org database that lists the most recent
Two-Line Element (TLE) ephemerides, as provided by CSpOC as a free
service to the public and satellite operators. We are currently testing UT
Austin’s integrated database3 [12] of various SSA sources (including
CSpOC) as an alternative SSA example. The S3, CAS, and SSA are hosted
on separate servers to mimic disjoint entities within the STM network.
Currently, we have implemented an example AMA in Python inside the
CAS application, on the same server. However, since it exchanges in-
formation with CAS using pre-defined APIs, the AMA and CAS can be
separate entities as well. Fig. 2 shows the STM test bed in terms of
functions within the prototype implementation, while Fig. 3 shows the
chosen technologies. Deployment and information flow sequence will be
described in Section 2.2 and 2.3, respectively.

2.2. STM stack deployment

The STM stack was developed and deployed into Docker containers
in the microservices architecture. Docker containers are lightweight
compared to virtual machines making them resource effective. They
provide uniformity across development and production environments,
making deployment agnostic to the operating system. They are suitable
for continuous integration and deployment, with consistency across
multiple development and release cycles, and have an excellent support
base with several official supported containers. The Dockerized, and
thereby standardized, STM environment has allowed repeatable devel-
opment, build, test and production.

The current STM stack as deployed is illustrated in Fig. 3. While it
can support multiple S3/CAS/SSA or other services, per the STM ar-
chitecture and marketplace described in Section 1, only one instance of
each has been shown. The stack was verified on Windows 10, Mac OS
10+, and Ubuntu. NASA’s stringent security requirements prevent
admin access on any host machine. To work within NASA security pa-
rameters, which is perhaps representative of siloed application re-
strictions that STM is expected to operate in, the containers are deployed

3 AstriaGraph page accessed on October 2, 2019: http://astria.tacc.utexas.
edu/AstriaGraph.

S. Nag et al.

https://sreejanag.github.io/Videos/AmesSTM_demo_2019.mp4
http://astria.tacc.utexas.edu/AstriaGraph
http://astria.tacc.utexas.edu/AstriaGraph

Acta Astronautica 180 (2021) 489–506

493

inside a Virtual Machine (VM). We used Ubuntu 14 as the VM to deploy
the application containers. SG and S3 applications were available over
http in a web browser, and will be extended to https for future imple-
mentations. SG and S3 have two containers each: MongoDB, Express +
Node. The hosted Express servers which rendered the Node. JS API and
the compiled Angular app were rendered as HTML + JS pages. Data
persistence is achieved by configuring the MongoDB to allow the SG and
S3 to store the data files on the host machines.

2.3. APIs and interactions

Since STM’s core benefit is the availability of common APIs and data
models that roles can use to interact with each other seamlessly, we
defined them on SwaggerHub. Every piece of information exchanged

between two containers or servers in Fig. 3 would invoke a Swagger
request that adhered to defined APIs. For example, the OpenAPI model
of the SSA response to an orbit data request is seen in Fig. 4. In this
example, the SsaOrbitDataMessage model consists of the SsaRSO
(“Resident Space Object”) field, which specifies the catalog used and
identifier within the catalog, and the SsaODM (“Orbit Data Message”)
field, which contains the ephemeris data for the object. This information
is transmitted as a JSON object. The nature of the pull requests to the
SSA catalogs and publication/subscription of data will be sensitive to the
regulations of the data sources. For example, the ingestion of SDC data
can regulated by the SDA and available only to members, data from
commercial providers like ExoAnalytic or LeoLabs can be subject to a
fee, and advanced service access CSpOC data may need an SSA sharing
agreement with the United States Strategic Command [15]. Once a

Fig. 2. Current STM Testbed showing the functions for SG and one S3 instance, interacting with one CAS and one SSA. The architecture supports multiple instances
of services (S3, CAS, SSA, etc.).

Fig. 3. Current deployment structure of the STM stack. Arrows represent flow of information. Only one instance of services (S3, CAS, SSA) is shown, however
multiple are possible.

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

494

connection is authenticated, APIs of varying complexities (very simple
example in Fig. 4) can be used to exchange data in keeping with in
keeping with National Space Traffic Management Policy’s Open Archi-
tecture Data Repository, and other existing standards by CCSDS.
Reference [14] Section V⋅C describes proposals for automating catalog
access. Similarly, all interactions between service providers and with SG
can occur through such APIs and have been implemented in our STM
prototype as described below.

The SG manages the basic STM functions (e.g. registration, discov-
ery) that allow interactions between S3, CAS and SSA. Each S3 can
register with the SG using a self-generated UUID identifying it uniquely.
It stores CAS, SSA and S3 configuration settings via the S3 + SG API in
MongoDB (Fig. 3). STM’s core customers are the spacecraft O/O’s, and
any S3 supports O/O registration and O/O sign-in. The S3 login page is
shown in Appendix C (#1).

Fig. 4 is a sequence diagram of typical interactions between the STM
service providers for screening and collision avoidance services. S3 may
invoke a screening request for the O/O’s spacecraft at a pre-determined
frequency or on an as-necessary basis, as seen in the UI screenshot in
Appendix C (#2). The request specifies the O/O’s unique ID and prop-
erties. The UI also allows the S3 to enlist their choice of SSA and CAS
provider for the request. Appendix C (#2) also shows the S3 discovery of
CAS and SSA registries via APIs. These registries are published by the SG.

Once the screening request is submitted by S3, it invokes the S3+SG
API for user authentication, authorization, storing and retrieving
screening requests and responses, and then invokes the CAS API. These
APIs are exposed securely by the SG. The CAS server, upon receiving the
request, invokes the SSA server using the SSA API to retrieve the most
updated TLE and state information on all spacecraft. The SSA server log
can be seen in Appendix C (#3). Note that this workflow assumes that
the CAS, SSA, CAS-AMA servers are set up (running and ready to
receive) before the S3 launches its requests.

Upon receiving the SSA response via API, the CAS server initiates the
screening process using an example conjunction assessment application
running on proprietary software (in our case, MATLAB and AGI STK).
Appendix C (#4) shows the screenshot of this step. The CAS app pro-
cesses the screening results received from MATLAB and STK, then in-
vokes an API to return Conjunction Data Messages (CDM) to the S3. Each
potential conjunction is selectable on the UI, so that the S3 can identify

High Interest Events (HIE) among the CDMs that warrant more analysis
and re-submit to CAS to re-run with more accurate SSA sources and to
observe how the event evolves over time. Accurate observations are
fundamental to planning for space safety [18], therefore the ability to
task additional observations based on covariances for a potential
conjunction is an important assurance feature in STM. The current
prototype allows the S3 to select HIEs from the list of CDMs that they
would like to plan maneuvers for. Appendix C (#5) shows a screenshot
of the API as visible to the user in this step. Submitting the planning
request (‘Get maneuvers’) invokes the CAS API, which then calls the
AMA tool (currently housed inside CAS).

Once the maneuver request is submitted by S3, it invokes the CAS-
AMA API which starts the AMA application and runs the maneuver
planner. An example scenario will be described in Section 3 showing the
iterative nature of interactions (specifically in Section 3.3) between
AMA, CAS and SSA in scheduling maneuvers for multiple satellites
involved in frequent conjunctions. After completion, the AMA responses
are currently stored on the CAS server and may returned to the S3 in the
form of graphs and data files characterizing the ‘proposed maneuvers’. If
more than one maneuver sequence is proposed, the S3 may recommend
one ‘accepted maneuver’ in consultation with the O/Os, following which
the O/O makes the orbit correction, and the S3 pushes the updated orbit
ephemeris to the SSA. In turn, the SSA makes the information available
to the wider STM network so that every other operator now has access to
updated information. Throughout the process, security between S3 and
SG is maintained with a combination of token and UUID for each S3.
MongoDB stores the user(s), screening request and response, system
logs, and interacts with the other applications using the S3 + SG API to
MongoDB (Fig. 3).

3. Application to sequential conjunctions and planning collision
avoidance

The STM prototype was used to test conjunction assessment and
COLA use cases that represent complex, cascading behaviour. Current
state of the art is that spacecraft operators get an email from CSpOC or
another automated SSA/CAS service informing them of future con-
junctions involving their spacecraft, and if they have maneuvering ca-
pabilities, they execute a COLA maneuver. There is rarely coordinated

Fig. 4. Example OpenAPI model of the SSA response to an orbit data request.

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

495

planning (or even communication exchange) between operators, and at
the current orbital population, rarely a series of consecutive conjunc-
tions expected for the same satellite in a few days. Therefore, realisti-
cally based on conjunction uncertainty and operator preferences, doing
nothing may often be the least risky (and least expensive) path. How-
ever, rare occurrences of mischaracterization have lead to catastrophic
and near-permanent damage in space. For example, the Iridium 33
collision with the defunct Kosmos 2251 in 2009, resulting in >2000
pieces of debris >10 cm, was caused due to uncertainty in SSA data,
inadequate methods of orbital determination, and the absence of wide
data sharing that limits planning under uncertainty [19]. More recently,
ESA’s Aeolus satellite maneuvered to mitigate a conjunction with a
SpaceX satellite in September 2019, after failed communication with
SpaceX when PoC grew rapidly in the days before the conjunction, and
ensuring a final miss distance of 306 m [20]. As SpaceX increases its
Starlink constellation size to 7500+ (albeit maneuverable) satellites
[21], such conjunctions are expected to become more frequent, and
COLA maneuvers may have imminent, sequential impact on following
conjunctions in a ‘cascading’ fashion. While the UN Committee on the
Peaceful Uses of Outer Space guidelines for enhanced registration makes
it easier for operators to get in touch, an automated pipeline for S3
communication, negotiation, and decision-making will improve effi-
ciency across constellations owned by disjoint entities.

Our proposed STM architecture allows participants to pull from
continuously updated individual SSA sources or well-integrated groups
of sources (example format suggested in Section 2.3), and to publish O/
O provided information automatically to such sources (start and end of
sequence in Fig. 4). We have developed an example CAS [17], that is
capable of automated (A) conjunction screening, i.e. 1-vs-all or N-vs-M
conjunction predictions, (B) encounter identification to flag HIEs from the
conjunction list based on pre-determined threshold probabilities of
collisions (PoC), covariance errors allowed, etc., (C) maneuver generation
to list possible COLA strategies to avoid the HIE, and (D) maneuver
screening, i.e. conjunction assessment for the resultant satellite orbit if
the O/O were to execute any of the COLA strategies. CAS interacts with
S3 via standard APIs to provide CDMs; S3 chooses HIEs among the CDMs
and submits a maneuver planning request to CAS (Fig. 4). Reference
[17] describes the example CAS, the algorithms used to enable the above
A-D steps, and the trade-offs between the COLA maneuvers generated
for consideration. This paper extends the CAS capability to introduce
planning and scheduling a sequence of efficient maneuvers to clear
conjunctions by maximizing a reward function that factors in
system-wide conjunction risk among an arbitrary set of satellites. The
maneuver planner is currently internal to the example CAS (‘generate
proposed maneuver’ in Fig. 4), however it can be a separate service that
uses data exchanged between the CAS and SSA. The CAS returns a list of
proposed maneuvers to S3, which selects a maneuver and implements it
in consultation with the O/O, after which the new TLEs are updated in
STM (Fig. 4).

To demonstrate the capability of the STM prototype in a COLA
sequence, we conducted a case study involving sequential conjunctions
between six active satellites over a one-week period, overseen by an S3.
Current state of the art maneuver planning executes steps A-D in
sequence and is sufficient for infrequent COLA decision-making by a
single active satellite against debris or non-cooperative satellites. It may
also be extendable to multiple conjunctions between that satellite and
the already identified piece(s) of debris. Maneuver planning for multiple
controllable agents with frequent conjunctions is more complex; it re-
quires steps A-D to be executed iteratively as an algorithm searches
through the planning horizon for an optimum sequence of maneuvers.
This case study demonstrates the STM prototype’s ability to seamlessly

exchange information among various service applications on different
platforms and servers, in keeping with process flow in Section 2.3, to
enable continuous and iterative collision prediction and control. While
the example planner is a system-wide reward-maximizing, greedy
scheduler that outputs a schedule for COLA actions by each satellite, it
paves the path for new research in satellite maneuver planning, sched-
uling and negotiation across disjoint entities, enabled by the availability
of an STM network. It is extendable to conjunction scenarios with non-
maneuverable satellites or non-cooperating actors or debris (which are
assumed to have right of way) by selecting the active maneuverable
satellites and optimizing for rapid communication, negotiation and
maneuver planning among them, given known constraints.

3.1. Conjunction screening and encounter identification

For a one week period starting May 20, 2010, we simulate an S3 that
is responsible for 6 spacecraft (NORAD ID # 10676, 25419, 25477,
41918, 42809, 42961) belonging to one or many operators, henceforth
called primary spacecraft. When sending the screening request to the
CAS, the S3 sets the “do-not-violate” thresholds on PoC to be 1e-6 and
the spacecraft error ellipse to be 20 km × 10 km × 5 km, in the along
track, cross track and radial directions. While this PoC is more conser-
vative and the error ellipse far larger than typical, we set it so that
several sequential conjunctions are detected and collision avoidance
maneuvers have a good chance of inducing new additional high-risk
conjunctions over the study period, without having to forcefully in-
crease the satellite population beyond the current database. The aim is
to mimic a scenario when the population is much larger, and therefore
where sequential conjunctions are commonplace, and therefore there is
significant risk that moving will make conjunctions worse and cost fuel
to the operator satellite.

While true PoC is a more accurate metric to assess risks, it is
computed by integrating a three-dimensional probability density func-
tion that quantifies the uncertainty of the relative position between any
two satellites. Since we did not have access to the covariances of the 6
primary satellites, an alternative measure of risk called maximum PoC
(Max PoC) was used, which is the worst-case PoC possible for a given
conjunction geometry. The CAS performed the request by executing
MATLAB code that automated an instance of AGI STK and AdvCAT, an
add-on conjunction analysis tool. A one-versus-all screening is carried
out, i.e. the orbit of each of the 6 primaries is compared to the orbits of
all remaining RSOs over a week of simulation. For simplicity, STK’s
HPOP propagator was used with TLE-derived state vectors as initial
conditions.

Based on these parameters, ~50 conjunctions or encounters were
returned as CDMs by CAS to S3, and are referred to as primary con-
junctions. Encounters identified are those whose Max PoCs violate the
PoC threshold during the scenario time period.

3.2. Maneuver generation and screening

Candidate COLA maneuvers are generated to mitigate the primary
conjunctions using the analytical formulation of Bombardelli and
Hernando-Ayuso [22], implemented on MATLAB. Given an impulse
budget ΔV and maneuver location Δθ before the Time to Closest
Approach (TCA), this algorithm finds the optimal impulsive ΔV vector
orientation that maximizes the miss distance between two objects at
TCA. Future work may optimize the in-track, radial, cross-track di-
rections of thrusting such that COLA actions may be incorporated into
regular station-keeping (e.g., prograde in-track burns are almost free for
a circular orbit). As with other elements of the CAS, note that it can

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

496

replaced by another algorithm, should it be more appropriate.
The goodness of a maneuver is determined (screened) not only by the

extent to which the primary conjunction was mitigated, but also by
additional conjunctions that the maneuver causes. A secondary
conjunction is a post-maneuver conjunction between the primary satel-
lite and the same secondary RSO that resulted in the HIE, which moti-
vated the maneuver. A tertiary conjunction is a post-maneuver
conjunction between the primary satellite and a completely different
RSO.

The maneuver planner is informed by insights from several case
studies, three of which are documented in Ref. [17] - a HIE between an
active satellite and debris object, an active satellite against four others, a
head-on conjunction between two satellites in very similar orbits. The
results show that primary conjunction mitigation and minimizing new
secondary/tertiary conjunctions are conflicting objectives even for a
single maneuverable satellite to avoid a single HIE (Figs. 5, 7 and 8 in
Ref. [17]). Therefore, an inclusive objective function is required for
optimum planning. For multiple sequential conjunctions, at any given
point in time before TCA, there may be multiple maneuver choices by a
satellite, depending on which conjunction it is trying to avoid. Fig. 5
shows candidate maneuvers by a satellite (NORAD #15333) in order to

avoid imminent collisions with four RSOs (in four colors, where the
legend contains their NORAD IDs). The original Max PoC of each event is
shown as dashed lines; the TCA for each event corresponds to the point
where the dashed and solid lines intersect. The markers represent the
reduced Max PoC if a ΔV = 1 m/s maneuver is executed at the said
epoch. Between 22 and 26 h after the screening epoch, NORAD #15333
may choose to execute the red or green maneuvers in order to avoid
NORAD #41343 and #36155 respectively. Therefore, each time step in
the planning horizon can be considered a Markov Decision Process
(MDP) for the satellite #15333. In the figure, screening epoch is defined
as the simulation start time.

While this example shows the importance of multi-objective opti-
mization (reward proposed in Equation (1) may be used) to select a
maneuver or a combination, the controllable, decision-making agent is
still a single S3 managing a single spacecraft. For generality, the main
case study in this paper shows sequential conjunctions between multiple
controllable spacecraft and involves a maneuver tradespace for every
spacecraft, and every conjunction. The O/O(s), mediated by their S3(s)
and informed of the tradespace by their CAS, are expected to consult,
plan and decide which maneuver is to be selected.

Fig. 5. Sequence Diagram for interactions between the STM Gateway and various roles/providers in the STM network for the screening and conjunction assess-
ment workflow.

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

497

3.3. Maneuver planning

An example system-wide reward function for maneuver planning is
proposed in Equation (1). In the presented case study, Equation (1) is
evaluated for a set of potential collision avoidance maneuvers on a per-
HIE basis, but this function could also be cumulatively added over time-
steps to support alternative planning algorithm designs. It maximizes
mitigation benefit minus cost across all controllable spacecraft, so that
the space ecosystem is safer and more efficient as a whole. The process of
implementing it across disjoint entities is the credit of the STM architec-
ture and its software prototype, per the process in Section 2.3.

P = − ∞ if PoC(t+Δt)> th0, otherwise (2)

The first term in Equation (1) captures the extent of mitigation of the
primary conjunction, ignoring conjunctions with max PoC two orders of
magnitude or more below the HIE threshold PoC. The second term
captures the required delta-V of the maneuver in m/s. The third term
captures the total PoC of secondary conjunctions introduced due to the
maneuver, again disregarding conjunctions with max PoC two orders of
magnitude or more below the HIE threshold. If a maneuver changes the
time of the primary conjunction but does not eliminate it, this will be
recorded as a secondary conjunction. The fourth term captures the total
PoC of tertiary conjunctions introduced due to the maneuver (those with
an RSO not involved in the mitigated conjunction). These conjunctions
are also filtered to remove any more than two orders of magnitude below
the threshold max PoC and additionally weighted by the time until the
tertiary conjunction, so that conjunctions with the entire space

ecosystem that are far into the future do not overshadow immediate
ones. A log is used to reduce the severity of fall-off in the value of future
conjunctions. The fifth term is a constant cost to plan any maneuver, so
that a single maneuver is preferred to multiple ones to mitigate potential
impact to the primary mission, all else being equal. This term is irrele-
vant for the implemented greedy per-conjunction algorithm, but is
important for state-space search algorithms to capture practical prefer-
ences; e.g. operators prefer to advance or defer pre-planned station-
keeping maneuvers if they do decide to move their spacecraft for COLA.
The sixth term (P) is a policy term that is set to –∞ if any PoC (new
primary PoC, or any secondary or tertiary PoC) is greater than the
threshold PoC that flags an HIE, within a pre-defined Δt, because any
maneuver that creates an new highly probable conjunction within a
short horizon is deemed unacceptable. For the greedy algorithm, no Δt
was used, simply requiring all HIEs to be cleared before they occur. The
weights wx are set by the S3, in keeping with their customer/operator’s
priorities of the above described parameters. All were set to unity for this
case study. The scaling factor sx for every term is automatically deter-
mined by the planner, based on the available set of maneuvers and their
corresponding PoC, so that each term is of similar order of magnitude. Δt
was set to two orbital periods. The reward function can take positive or
negative values, with higher reward being better.

Running a full factorial of maneuvers for all 6 satellites with the
combinatoric of variations in the executing satellite, ΔV of the maneuver
and the maneuver execution time (corresponding to Δθ in the orbit
when ΔV is applied) is computationally unrealistic because it entails re-
computing Equation (1) (i.e. re-propagating RSO orbits, and doing a
computationally expensive search for conjunctions) thousands of times.
Simulated annealing (a traditional global optimization method) with the
above reward took 3–12 h to find the optimum maneuver sequence for
sat #25419 alone, with ΔV = 1–10 m/s, a week of temporal search space
and various combinations of tuning parameters. Algorithm complexity
scales with the power of the number of satellites. Therefore it was
deemed unfeasible for exploring multiple controllable satellites, pri-
marily owing to the computational load of the propagation and AdvCAT
screening steps.

Instead, we devised a Multi-Spacecraft Maneuver Advisor Algorithm
(MSMA) that informs the example AMA. The MDP is formulated as a
graph-based search space for every spacecraft [23] where the decision
variable at any time step is a maneuver option, and the optimum path
traces the time series of these maneuvers within feasibility constraints.
MSMA has been implemented in Python and is housed within the CAS. It
is a greedy algorithm to clear all conjunctions involving at least one of
S3’s 6 spacecraft over the scenario time period. For each HIE in chro-
nological order, the algorithm (1) screens for potential conjunctions
above an S3 or operator-specified risk threshold per Section 3.1, (2)
generates a tradespace of COLA maneuvers for all S3 spacecraft, per
Section 3.2 by varying ΔV and Δθ between an HIE-clearing maneuver
and next HIE; (3) calculates the reward for each candidate COLA ma-
neuver per Equation (1) with PoCs computed per Section 3.2; (4) selects
and simulates the COLA maneuver with the highest reward; (5) screens
for HIEs and repeats this process until the system is free of HIEs from the
start to end of the case study time period.

Fig. 6. Example of sequential conjunctions and the maneuver options (varying
Δθ only) generated for COSMOS 1603/NORAD ID: 15333 to mitigate them
[17]. Maneuver performance is quantified by the post-maneuver screening, in
terms of Max PoCs against the four spacecraft that caused the primary con-
junctions. Each square is a 1 m/s maneuver (ΔV) arranged by execution
epoch (Δθ).

ptr =w1 ∗ s1 ∗
[
new prim PoC ∗

{(
new prim PoC − th ∗ 10− 2)> 0

}
− old prim PoC

]

− w2 ∗ s2 ∗ ΔV
− w3 ∗ s3 ∗

∑
sec PoC ∗

{(
sec PoC − th ∗ 10− 2)> 0

}

− w4 ∗ s4 ∗
∑

tert PoC ∗
{(

tert PoC − th ∗ 10− 2)> 0
}

∗
1

log(timeToConjunct)
− w5 − P

(1)

S. Nag et al.

ActaAstronautica180(2021)489–506

498

Fig. 7. [top] Full tradespace of maneuvers generated by the planner, as a function of time of execution time (X-axis) and executing 6 satellites per the listed ΔV in km/s (Y-axis). The 13 conjunctions mitigated are
indicated by vertical colored lines at TCA (label in bottom). The candidate maneuvers are shaded in greyscale in proportion to their reward. The chosen maneuver to mitigate a conjunction is shaded in the same color as
the conjunction vertical it mitigates. [middle] Maneuver tradespace with their reward on Y-axis. The chosen maneuvers are joined with a black line and the cumulative reward (by integrating Equation (1)), obtained by
adding up the reward associated with each maneuver to mitigate each conjunction. The maneuver markers and conjunction lines are color-matched throughout. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

S. N
ag et al.

Acta Astronautica 180 (2021) 489–506

499

Running the MSMA for the case study duration of 1 week identified
and cleared sixteen conjunctions that included at least one of the six S3’s
satellites and warranted a COLA action. Some of these conjunctions were
present in the original scenario and some new ones were introduced by
the proposed COLA maneuvers. Nonetheless, MSMA in the example
AMA implementation reduced the total number of HIEs from ~50
(screened in Section 3.1) to 16, and cleared all of them by distributing
the COLA maneuvers across all 6 spacecraft. Fig. 6 shows the spread of
the 16 mitigated HIEs as vertical lines of different colors, whose abscissa
corresponds to their TCA epoch within the evaluated week. The units of
the X-axis and conjunction time legend are in hours since 2020/05/20
7pm UTC. Each conjunction is assigned a unique color; those that seem
visually similar have been placed spatially apart to ease readability.
Fig. 6 also shows the maneuvers considered and recommended by the
MSMA to mitigate the said 16 conjunctions. The full list of conjunctions,
TCAs, and the satellites and maneuvers selected to mitigate them are
listed in Appendix D.

For every conjunction from left to right in Fig. 6-top, MSMA gener-
ates M*N maneuvers per maneuverable satellite; across M propellant
options (ΔV) and N epochs (Δθ) evenly spanning the time-space between
the maneuver selected to avoid the previous conjunction (colored circles
in Fig. 6-top) and the next conjunction (Fig. 6-vertical lines). The figure
shows the full tradespace of M*N maneuvers considered per conjunction
as circles, where the parameters of each maneuver are listed in the Y-axis
(satellite NORAD ID and ΔV) and arranged by execution epoch (Δθ) in
the X-axis. Colored circles represent the maneuvers that are recom-
mended by the MSMA, assumed to be selected and executed to prevent
the conjunction (vertical line) of the same color. For non-selected ma-
neuvers, the darker the circle, the better that maneuver is according to
Equation (1). Maneuvers that cannot clear a conjunction are assigned -∞
reward and plotted as open circles. One maneuver option (ID# 10676,
ΔV = 7.5 m/s, last Δθ) has been removed from the plot since its
extremely low reward of − 14.45 biases the greyscale. While N = 10, M
= 3 in the results presented, they can be easily changed to improve

fidelity at the cost of increased runtimes.
While conjunctions may get added later (toward the right of the

figure) due to maneuvers implemented to clear earlier conjunctions, it is
possible that a particular maneuver mitigating a conjunction will induce
a new conjunction after the particular maneuver but before the TCA of
the mitigated conjunction. This happens in Fig. 6 when the third
conjunction from the left (green) is mitigated resulting in another
conjunction (yellow) with a TCA before the TCA for the green
conjunction. Each of the resulting conjunctions are therefore also
planned for and mitigated in sequence. The temporal flow of the ma-
neuvers is from one colored circle to the next, starting from the left and
moving rightwards.

The MSMA recommends the maneuver that clears the most imminent
conjunction with the highest cumulative reward (maximizes Equation
(1)), before planning for the next conjunction. Fig. 6-bottom shows the
reward value of all potential maneuvers considered to avoid the 16
conjunctions. The shape of the markers corresponds to the primary
satellite that will execute the potential maneuver. For every marker
shape (i.e. satellite), the color of the marker represents the conjunction
(same colored vertical line) that maneuver is intending to avoid. There
are M*N markers per shape and color to account for the 30 maneuvers in
the tradespace per conjunction (for M = 3, N = 10). A thick black line
connects the markers representing the selected maneuvers to be
executed. Initially, a maneuver involving satellite 25419_1 is selected to
mitigate the conjunction at time 4.56, then satellite 42809_2 moves to
clear another conjunction at time 6.23, followed by Satellite 42961_3
moving to clear a third conjunction (green) at time 25.46. This produces
another conjunction (yellow) at time 23.28, which is again cleared by a
maneuver. This continues until no conjunctions exist over the planning
period. Candidate maneuvers that attain -∞ reward are not plotted.

While none of the 16 conjunctions cleared were between the 6 S3
satellites, if such an HIE were to be screened, the MSMA would choose
the highest system-wide reward across the maneuver tradespace for both
spacecraft, i.e. another stack of 30 circles for that conjunction in Fig. 6-

Fig. 8. Development cycle of the STM prototype from the proposed architecture on the left (past work), to a software prototype which uses sample models or
examples developed in-house as service entities in the middle (current state), to a higher fidelity software prototype which uses partners to represent service entities
(future work).

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

500

top, and another 30 markers of the same color but different shape in
Fig. 6-bottom. Only one satellite with the higher reward would ma-
neuver. This behaviour has been verified on single events, however it is
difficult to replicate in a cascading conjunction scenario unless it is the
first encountered HIE (clearing one HIE often clears other HIEs between
two target satellites). The output in either scenario shows the temporal
order of maneuvers to clear conjunctions over the planning period,
where the MSMA successfully chooses the largest possible reward to
clear each conjunction in a chronological sequence. This recommenda-
tion is then presented to the S3 for selection and then to the operator for
execution via the STM framework.

Per-conjunction reward maximization via MSMA does not neces-
sarily lead to global optima (global maximum reward), but it is signifi-
cantly more tractable and provides a reasonable baseline against which
other more sophisticated solutions can be compared. More importantly,
this simple example demonstrates the need of automated and distributed
planning in a crowded future space environment where sequential
conjunctions and cascading consequences of maneuvers to avoid them
will be common. The STM architecture is expected to spur research in
these areas, and the STM prototype is expected to enable testing them.

3.4. Maneuver negotiation

The planning example we presented involved a conjunction between
multiple maneuverable satellites, all controlled by the same S3. If mul-
tiple maneuverable satellites within a CDM are controlled by different
S3s, maneuver negotiation may be needed before accepting and pub-
lishing a maneuver. Currently in the absence of STM, such negotiations
are rare and occur by email, telephone, or fax (if at all). More commonly,
an operator simply informs CSpOC of an intended maneuver, evaluates
screening results, and executes the maneuver without negotiation. This
process has functioned thus far because conjunctions are rare—most
conjunctions involve only one maneuverable satellite (the other being
propulsion-less, e.g. CubeSat or debris)—and the overhead of negotia-
tion and legal implications has been perceived to outweigh the benefits.
For example, the SDA process has successfully facilitated the negotiation
that our MSMA system simulates, whereby multiple maneuverable
spacecraft are coordinated by different S3s, namely the SDC and the
18SPCS system.

As conjunctions become more common and maneuvers result in
cascading secondary or tertiary conjunctions, maneuver negotiation is
envisioned when CDMs involve single or multiple maneuverable satel-
lites by different S3s. Consensus may be established by S3s communi-
cating through the STM network and APIs, or a brokering service that is
an SDS within system. A future version of the STM prototype will define
such APIs and implement example S3s (and brokers) to demonstrate the
utility of such standardization.

Who maneuvers may be decided by rule-based systems like those
used by sailboats, Coasian-based payments based systems where one
would pay the other to maneuver and determine a price cheaper than its
own cost to maneuver (e.g., a currency quantification of Equation (1)),
auction-based systems where such payment prices are bid and counter-
bid between the negotiators, resource-based systems which choose the
higher reward or lower cost operator (e.g., evaluated using Equation
(1)), dual-maneuver implicit cost split where both maneuver with
equitable cost (e.g., by optimizing the total reward across both operator
satellites using Equation (1)), or “space chicken” where it is assumed
that one operator will eventually decide to move to avoid an imminent
HIE. These are discussed in detail in Ref. [14]. Modifications to quan-
titatively account for practical preferences such as fuel weight in reward,
combining COLA maneuvers with pre-planned station-keeping or

trusting the more experienced operator with maneuvers are possible for
all proposed systems above. Research on such topics will need to take
into account rules for public sharing of information, disparity in reward
definitions or weights across operators, commercial incentive to
over-report mission impact or under-report efficient maneuvers to avoid
action, fairness over time so that the onus of action is equitable (an
operator is in some way credited for previous maneuvers when consid-
ering the next required maneuver), etc.

4. Conclusions and future work

The STM research platform at NASA Ames has workstations, servers
and a hyperwall, with NASA and AGI software suites, and is leveraging
the UTM experience and codebase for STM development. Fig. 7 shows
our development process from left to right: we have proposed an STM
architecture in the past, summarized in Fig. 1 [14,15]. The current paper
describes the software prototype we have developed using example
service providers (e.g. CAS, AMA, SSA), and in-house sample models
[17] or publicly available algorithms for internal functions of the ser-
vices. We are now involving early partners in industry, academia, and
government who will be potential operators and higher fidelity service
providers, i.e. potential customers of the STM network. The modular,
containerized architecture ensures that they will interact only through
APIs and data models, without having to share any proprietary internals
of their software. The presented prototype of the STM architecture is for
an initial version of TCL1 (on-orbit operations with civil catalogs). The
architecture and prototype will be matured over the TCLs defined in
Ref. [15] Fig. 8, and as we improve our use case portfolio and increase
partners. The process in Fig. 7 is expected for every TCL.

The STM architecture and standardization of interaction between
entities paves the way for a research ecosystem similar to other AI/au-
tonomy fields, such as UAS or self-driving cars. Some planning and
scheduling scenarios are listed below in terms of increasing complexity:

1. Single maneuverable satellite to avoid a conjunction with an unco-
operative target

2. Single maneuverable satellite to avoid conjunction with a single
maneuverable satellite, both controlled by the same S3

3. Multiple maneuverable satellites to avoid sequential conjunctions
with multiple maneuverable satellites, all controlled by the same S3

4. Multiple maneuverable satellites to avoid sequential conjunctions
with multiple maneuverable satellites, controlled by different S3s

We applied the STM prototype to a multi-satellite scenario that
required sequential COLA actions to prevent frequent ‘cascading’ con-
junctions (#3). The scheduling algorithm in our example AMA is
capable of handling scenarios #1, #2 and #3, and we discuss the
negotiation implications required to extend to #4. We also presented an
example reward function and an example planning algorithm to advise
on the schedule of COLA maneuvers across multiple satellites. Simple
examples in this paper are expected to serve as a strawman for future,
high fidelity STM services acknowledging that there may be un-
certainties in the quantification of risk and reward models given the
international complexity of the STM environment; e.g. COLA with
government/military satellites of a different country whose operator is
unknown. While this paper focused on CAS and COLA related applica-
tions of autonomy within the STM, there is future scope for AI/auton-
omy development for other aspects of STM such as validating and
merging SSA catalogs (e.g. with SDC APIs), decision-making as a func-
tion of uncertainty in data unavailability, and COLA as a function of
varying levels of data sharing, as discussed in detail in Ref. [14].

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

501

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This project was sponsored by NASA Aeronautics Research Mission
Directorate. The authors would like to thank Dr. Joseph Rios and Priya
Venkatesh at NASA ARC, and Prof. Mykel Kochenderfer and his student,
Nolan Johnson, at Stanford University for useful discussions on the
topics presented.

Appendix A. Benefits of MicroServices

We used a micro-service architecture to deploy the STM prototype owing to the following major benefits [24,25]:

• Complexity localization — Services are self-contained, independent applications. The development team for each service (S3, CAS, etc.) is only
concerned with understanding the complexities of their service. Other teams only need to know what capabilities are being provided by the other
services; they don’t need to know how they work internally.

• Cross-cutting business functionality — Eliminates the need to reinvent standard pieces of functionality used across the organization multiple times;
for example, authentication and user management.

• Increased resiliency — Since a number of services communicate simultaneously, when one fails, the client should be designed to allow its neighbors
to continue functioning as it steps out as elegantly as possible. Improved fault isolation means an uninterrupted user experience.

• Better scaling, efficient system optimization and organization — Scaling decisions can be made at a more granular level.
• Output flexibility — Simplified data extraction.
• Real-time processing support — The publish-subscribe framework facilitates data processing in real time.
• Support for best technology selection — One is not limited to a single technology set for the overall project. Each microservice can be developed

using the most appropriate programming language and data storage technology for its function.
• Scalability — High level of code and data reuse, making it faster and easier to deploy additional services to address new use cases.
• Security flexibility — Allows applications to segment off and outsource their non-core business functions without disclosing core services.
• Experimentation flexibility — Ability to try out a new technology stack on an individual service. Compared to monolithic designs, any dependency

concerns will be smaller and rolling back changes is simpler. It also eliminates any long-term commitment to a single technology stack.
• Coordination — Uses event-streaming technologies to enable easy integration compared to the heavyweight inter-process communications

protocols.

Appendix B. Technology Comparison between Software Stack Components

The web frameworks considered for User Interfaces were:

• Angular 2+: Popular framework, large support community, MIT license, maintained by Google.
• React: Supported by Facebook, large developer support community.
• Django: Python web-framework, high scalability, offers high security, provides rapid development.

Angular 5 was chosen as the web development framework due to its small package size, extensibility, support of simple progressive web appli-
cation, material design, in-build code optimization, extensive capabilities to interface with APIs and our familiarity with it.

The Application Programming Interface frameworks considered were:

• Node. JS: Javascript-based runtime environment providing non-blocking, event driven servers due to its single-threaded nature; remains light-
weight and efficient in the face of data-intensive real time applications that run across distributed devices.

• Flask: Python-based lightweight web application framework designed to be quick and easy, with the ability to scale up to complex applications.

Node.JS was chosen as the preferred API framework.
The Database tools considered were:

• MongoDB: Open source document-based database management tool that stores data in JSON formats; Highly scalable, flexible and distributed
NoSQL database; Schema-less, no complex joins, ease of scale out, conversion/mapping of application objects to database objects not needed.

• Couch-base: Open-source NoSQL, multi-model, document oriented DB management system that store JSON documents.
• PostgresSQL: Object oriented relational DB with an emphasis on extensibility and standards compliance; functions and operators can be used with

JSON and JSONB.

MongoDB was chosen due to its Docker friendly images, ability to store JSON, capability to change streams which enables pushing updates across
and from various service providers and STM roles.

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

502

Appendix C. Screenshots from the STM software prototype

This section shows some screenshots from the execution of the software prototype, as executed end to end for the case study presented in Section 3.
The description of the APIs and the sequence narrative is available in Section 2.3.

1. Login and registration page for any S3, owners or operators

2. Screening request UI for an O/O spacecraft

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

503

3. SSA server log showing the receipt of the S3 request

4. CAS server initiates the screening process on proprietary software

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

504

5. API to return the CDMs to the S3 after screening results have been processed by the CAS

S. Nag et al.

Acta Astronautica 180 (2021) 489–506

505

Appendix D. MSMA Maneuver Details for Sequential Conjunctions

Listed below are the details of maneuvers recommended by the MSMA (assumed selected and executed) for 16+ conjunctions in the COLA case
study of Fig. 6:

References

[1] W. Ailor, G. Peterson, J. Womack, M. Youngs, Effect of large constellations on
lifetime of satellites in low earth orbits, J. Space Saf. Eng. 4 (3) (Sep. 2017)
117–123, https://doi.org/10.1016/j.jsse.2017.11.003.

[2] G. Peterson, M. Sorge, W. Ailor, New Space Activities and Implications for Space
Traffic Management and Conjunction Assessment, Aerospace Corporation, 2018.

[3] S. Alfano, D.L. Oltrogge, R. Shepperd, LEO Constellation Encounter and Collision
Rate Estimation: an Update, 2020.

[4] D. McKnight, M. Matney, K. Walbert, S. Behrend, P. Casey, S. Speaks, Preliminary
Analysis of Two Years of the Massive Collision Monitoring Activity, 2017.

[5] J.A. Haimerl, G.P. Fonder, Space fence system overview, in: Presented at the
Advanced Maui Optical and Space Surveillance Technology Conference, Maui,
Hawaii, USA, 2015.

[6] G.P. Fonder, P.J. Hack, M.R. Hughes, AN/FSY-3 Space Fence System-Sensor Site
One/Operations Center Integration Status and Sensor Site Two Planned Capability,
2017.

[7] C. Contant-Jorgenson, P. Lála, K.-U. Schrogl, The IAA cosmic study on space traffic
management, Space Pol. 22 (4) (2006) 283–288.

[8] K. Bilimoria, R. Krieger, Slot architecture for separating satellites in sun-
synchronous orbits, in: AIAA SPACE 2011 Conference & Exposition, 2011, p. 7184.

[9] C.R. Phipps, C. Bonnal, A spaceborne, pulsed UV laser system for re-entering or
nudging LEO debris, and re-orbiting GEO debris, Acta Astronaut. 118 (2016)
224–236.

S. Nag et al.

https://doi.org/10.1016/j.jsse.2017.11.003
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref2
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref2
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref3
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref3
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref4
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref4
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref5
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref5
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref5
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref6
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref6
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref6
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref7
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref7
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref8
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref8
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref9
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref9
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref9

Acta Astronautica 180 (2021) 489–506

506

[10] J. Mason, J. Stupl, W. Marshall, C. Levit, “Orbital debris–debris collision
avoidance, Adv. Space Res. 48 (10) (2011) 1643–1655.

[11] T.J. Muelhaupt, M.E. Sorge, J. Morin, R.S. Wilson, Space traffic management in the
new space era, J. Space Saf. Eng. 6 (2) (2019) 80–87.

[12] M.A. Skinner, M.K. Jah, D. McKnight, D. Howard, D. Murakami, K.-U. Schrogl,
Results of the international association for the advancement of space safety space
traffic management working group, J. Space Saf. Eng 6 (2) (2019) 88–91.

[13] D.L. Oltrogge, I.A. Christensen, Space governance in the new space era, J. Space
Saf. Eng 7 (3) (2020) 432–438.

[14] S. Nag, D. Murakami, M. Lifson, P. Kopardekar, System Autonomy for space traffic
management, in: 2018 IEEE/AIAA 37th Digital Avionics Systems Conference,
DASC, London, United Kingdom, 2018, pp. 1–10.

[15] D.D. Murakami, S. Nag, M. Lifson, P.H. Kopardekar, Space Traffic Management
with a NASA UAS Traffic Management (UTM) Inspired Architecture, 2019. San
Diego CA.

[16] P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung, J. Robinson, Unmanned
aircraft system traffic management (utm) concept of operations, Accessed: Feb. 14,
2017. [Online]. Available: https://www.researchgate.net/profile/Joseph_Rios2/p
ublication/303902685_UAS_Traffic_Management_UTM_Concept_of_Operations_to_
Safely_Enable_Low_Altitude_Flight_Operations/links/57e12df408ae9834b4e7e
459.pdf, 2016.

[17] J.V. Cabrera, S. Nag, D.D. Murakami, An initial analysis of automating conjunction
assessment and collision avoidance planning in space traffic management, in:

Presented at the AAAS Spaceflight Mechanics Conference, Maui, Hawaii, USA,
2019.

[18] M.A. Skinner, Conceptual development of a civil space traffic management system
capability, in: Advanced Maui Optical and Space Surveillance Technologies
Conference, 2018, pp. 11–14.

[19] T.S. Kelso, Analysis of the Iridium 33-Cosmos 2251 Collision, Analutical Graphics
Inc., Feb. 2009 [Online]. Available: https://www.agi.com/resources/whitepapers/
analysis-of-the-iridium-33-cosmos-251-collision.

[20] S. Alfano, D.L. Oltrogge, H. Krag, K. Merz, R. Hall, Risk assessment of recent high-
interest conjunctions, in: Presented at the 71st International Astronautical
Congress (IAC), Virtual, Oct. 2020.

[21] Federal Communications Commission, Space Exploration Holdings, LLC Request
for Modification of the Authorization for the SpaceX NGSO Satellite System, Apr.
26, 2019 [Online]. Available: https://www.fcc.gov/document/international-burea
u-grants-spacexs-modification.

[22] C. Bombardelli, J. Hernando-Ayuso, Optimal impulsive collision avoidance in low
earth orbit, J. Guid. Contr. Dynam. 38 (2) (2015) 217–225.

[23] S. Nag, et al., Autonomous scheduling of agile spacecraft constellations with delay
tolerant networking for reactive imaging, in: Presented at the International
Conference on Planning and Scheduling (ICAPS) SPARK Applications Workshop, U.
S.A., Berkeley, California, 2019.

[24] J. Thönes, Microservices, IEEE Softw 32 (1) (2015), 116–116.
[25] N. Dragoni, et al., Microservices: yesterday, today, and tomorrow, in: Present and

Ulterior Software Engineering, Springer, 2017, pp. 195–216.

S. Nag et al.

http://refhub.elsevier.com/S0094-5765(20)30732-3/sref10
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref10
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref11
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref11
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref12
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref12
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref12
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref13
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref13
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref14
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref14
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref14
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref15
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref15
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref15
https://www.researchgate.net/profile/Joseph_Rios2/publication/303902685_UAS_Traffic_Management_UTM_Concept_of_Operations_to_Safely_Enable_Low_Altitude_Flight_Operations/links/57e12df408ae9834b4e7e459.pdf
https://www.researchgate.net/profile/Joseph_Rios2/publication/303902685_UAS_Traffic_Management_UTM_Concept_of_Operations_to_Safely_Enable_Low_Altitude_Flight_Operations/links/57e12df408ae9834b4e7e459.pdf
https://www.researchgate.net/profile/Joseph_Rios2/publication/303902685_UAS_Traffic_Management_UTM_Concept_of_Operations_to_Safely_Enable_Low_Altitude_Flight_Operations/links/57e12df408ae9834b4e7e459.pdf
https://www.researchgate.net/profile/Joseph_Rios2/publication/303902685_UAS_Traffic_Management_UTM_Concept_of_Operations_to_Safely_Enable_Low_Altitude_Flight_Operations/links/57e12df408ae9834b4e7e459.pdf
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref17
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref17
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref17
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref17
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref18
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref18
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref18
https://www.agi.com/resources/whitepapers/analysis-of-the-iridium-33-cosmos-251-collision
https://www.agi.com/resources/whitepapers/analysis-of-the-iridium-33-cosmos-251-collision
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref20
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref20
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref20
https://www.fcc.gov/document/international-bureau-grants-spacexs-modification
https://www.fcc.gov/document/international-bureau-grants-spacexs-modification
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref22
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref22
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref23
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref23
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref23
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref23
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref24
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref25
http://refhub.elsevier.com/S0094-5765(20)30732-3/sref25

	Prototyping operational autonomy for Space Traffic Management
	1 Introduction to STM architecture
	2 Software prototype of the STM architecture
	2.1 STM software stack
	2.2 STM stack deployment
	2.3 APIs and interactions

	3 Application to sequential conjunctions and planning collision avoidance
	3.1 Conjunction screening and encounter identification
	3.2 Maneuver generation and screening
	3.3 Maneuver planning
	3.4 Maneuver negotiation

	4 Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	Appendix A Benefits of MicroServices
	Appendix B Technology Comparison between Software Stack Components
	Appendix C Screenshots from the STM software prototype
	Appendix D MSMA Maneuver Details for Sequential Conjunctions
	References

