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A B S T R A C T   

Current state of the art in Space Traffic Management (STM) relies on a handful of providers for surveillance and 
collision prediction, and manual coordination between operators. Neither is scalable to support the expected 10x 
increase in active spacecraft population in less than 10 years, nor does it support automated maneuver planning. 
We present a software prototype of an STM architecture based on open Application Programming Interfaces 
(APIs), and drawing on insights from NASA’s architecture for low-altitude Unmanned Aerial System Traffic 
Management. The STM architecture is designed to provide structure to the interactions between spacecraft op-
erators, various regulatory bodies, and STM service suppliers, while maintaining flexibility of these interactions 
and the ability for new market participants to enter easily. Autonomy will be an indispensable part of the 
proposed architecture in enabling efficient data sharing, coordination between STM participants and safe flight 
operations (e.g. select spacecraft maneuvers to prevent impending conjunctions between multiple spacecraft). 

The STM prototype is based on modern micro-service architecture adhering to OpenAPI standards and 
deployed in industry-standard virtualized containers, facilitating easy communication between different par-
ticipants or services. The system architecture is designed to facilitate adding and replacing services with minimal 
disruption. We have implemented some example participant services (e.g. a space situational awareness/SSA 
provider, a conjunction assessment supplier/CAS, an automated maneuver advisor/AMA) within the prototype. 
Different services, with creative algorithms folded into them, can fulfill similar functional roles within the STM 
architecture by flexibly connecting to it using pre-defined APIs and data models, thereby lowering the barrier to 
entry of new players in the STM marketplace. 

We demonstrate the STM prototype on a multiple conjunction scenario with multiple maneuverable space-
craft, where an example CAS and AMA can recommend optimal maneuvers to the spacecraft operators, based on 
a pre-defined reward function. Such tools can intelligently search the space of potential collision avoidance 
maneuvers with varying parameters like lead time and propellant usage, to optimize a customized reward 
function, and be implemented as a scheduling service within the STM architecture. The case study shows an 
example of autonomous maneuver planning using the API-based framework. As satellite populations and pre-
dicted conjunctions increase, an STM architecture can facilitate seamless information exchange related to 
collision prediction and mitigation among various service applications on different platforms and servers. The 
availability of such an STM network also opens up new research topics on satellite maneuver planning, sched-
uling and negotiation across disjoint entities.   

1. Introduction to STM architecture 

As outer space becomes increasingly congested with satellites, due to 
miniaturizing hardware, cheaper launches, more automated operations, 
entry of emerging economies and proposed large LEO constellations, the 
active satellite population in Low Earth Orbit (LEO) is expected to grow 

from ~1000 to over 16000 in 10–20 years [1–3]. The increased popu-
lation will be susceptible to greater risk of physical collision with each 
other or debris, radio-frequency interference, space weather, lasers and 
directed energy impacts, and thus have the potential to create more 
debris exponentially (Kessler Syndrome). While large and active satel-
lites are GPS-enabled and propulsion-controlled, small satellites rarely 
have propulsion and not all have GPS cards. Clusters of small satellites or 

* Corresponding author. 
E-mail addresses: sreeja.nag@nasa.gov, david.d.murakami@nasa.gov (S. Nag).  

Contents lists available at ScienceDirect 

Acta Astronautica 

journal homepage: www.elsevier.com/locate/actaastro 

https://doi.org/10.1016/j.actaastro.2020.11.056 
Received 18 May 2020; Received in revised form 22 November 2020; Accepted 28 November 2020   

mailto:sreeja.nag@nasa.gov
mailto:david.d.murakami@nasa.gov
www.sciencedirect.com/science/journal/00945765
https://www.elsevier.com/locate/actaastro
https://doi.org/10.1016/j.actaastro.2020.11.056
https://doi.org/10.1016/j.actaastro.2020.11.056
https://doi.org/10.1016/j.actaastro.2020.11.056
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2020.11.056&domain=pdf


Acta Astronautica 180 (2021) 489–506

490

massive derelicts thus pose major risks [4]. There are more than 19000 
resident space objects (RSOs) greater than roughly 10 cm in size, being 
currently tracked in Earth orbit. With the U.S. Space Fence expected to 
be operational soon, better surveillance of RSOs down to 5 cm is planned 
[5] and even 1–2 cm may be possible [6]. Better resolution and 
improved orbit determination will elicit more collision avoidance 
(COLA) maneuvers for previously unavailable tracks and reduce COLA 
maneuvers for previously false positive tracks. 

Current space traffic coordination mainly relies on the U.S. Air 
Force’s Combined Space Operations Center1 (CSpOC) to provide state 
tracking and conjunction prediction emails to operational spacecraft. 
COLA strategies may be vetted by injecting proposed maneuvers into the 
ephemeris products supplied to CSpOC to assess conjunction mitigation. 
Space agencies of some countries have customized traffic management 
teams for their own satellites, e.g. NASA’s Conjunction Assessment Risk 
Analysis (CARA) for NASA’s non-human spaceflight missions and the 
French Space Agency CNES’s CAESAR. Such Space Traffic Management 
(STM) services are centralized and cater to very specialized consumers, 
therefore not scalable to 10 or 100x increases in population. Moreover, 
any new STM system will have to account for existing players (CSpOC, 
CARA, etc.) and players that have supported them. For example, Space 
Situational Awareness (SSA) data is available from the U.S. Strategic 
Command and the Space Data Center (SDC) to their members. SDC is 
operated by Analytical Graphics, Inc. (AGI), a technology partner to the 
non-profit Space Data Association (SDA), which is a consortium of thirty 
major spacecraft operators, for-profit companies like LeoLabs, or data-
bases of individual companies like Planet Labs that volunteer their in-
formation publicly. The SDC has scaled SSA in the last decade, and has 
APIs which allow new entrants to supply their data in their own native 
format (i.e. a Data Lake model). STM or SSA data is exchanged using 
message standards set by the Consultative Committee for Space Data 
Systems (CCSDS). Even within the U.S., regulatory authority to super-
vise and license commercial space activities is split across several 
agencies, e.g. NOAA for remote sensing satellites, FAA’s Office of 
Commercial Space Transportation for launch and re-entry of spacecraft 
and their interaction with the national airspace, FCC for regulating 
communication spectrum allocation among commercial spacecraft ap-
plications. Operators are bound by domestic laws and regulations set 
forth by the Federal Communications Commission (FCC), National 
Telecommunications and Information Administration, Department of 
State, etc. In turn, such national regulators have to account for inter-
national law (e.g. the Outer Space Treaty), non-compliant players, and 

orbital debris mitigation compliance with international forums like 
Interagency Space Debris Coordination Committee (IADC). Compliance 
is especially difficult to enforce outside of radio regulations by the In-
ternational Telecommunication Union because no one body has regu-
latory authority over space (e.g. UN COPOUS is a deliberative body). 

While groups like SDC have successfully integrated SSA data from 
multiple providers, and previous studies have discussed perspectives on 
the complex landscape of managing global space traffic [7], identified 
preventive strategies against dangerous overcrowding of low Earth orbit 
(e.g. slot based allocation of sun synchronous orbits [8]), and active 
mitigation strategies for preventing collisions against debris (laser-based 
orbital control [9,10]), no scalable automated solution for end-to-end 
STM or Space Traffic Coordination and Management (STCM) has been 
prototyped yet. As the space population scales, and conjunction alerts 
against growing number of debris have to be sent to a growing number 
of active spacecraft, the current system is inadequately equipped to 
handle the increased workload [11] and will benefit from better infor-
mation technology. The recently signed Space Policy Directive 3 in the 
U.S. supports the transition of civil STM responsibilities to a civilian 
entity and provides additional guidance relevant to the development of 
an STM system. The International Association for the Advancement of 
Space Safety STM working group [12] and the AIAA STM working 
groups [13] have begun to identify the key requirements for such a 
system, as advised by academic, industry, legal and government 
stakeholders. 

To keep the utilization of outer space safe, sustainable and efficient, 
to provide structure only when necessary and allow flexibility of oper-
ations otherwise, NASA Ames Research Center (ARC) has proposed an 
STM architecture - visually represented in Fig. 1, and introduced in 
detail in Refs. [14,15]. STM in this paper refers to the same concept as 
STCM. The architecture is a set of defined roles, standardized open in-
terfaces (e.g. application programming interfaces/APIs), and data 
models (with required and optional fields, based on CCSDS and other 
industry standards), that allow automated and scalable interaction. The 
defined roles are:  

• Owner/Operators (O/O), who own and fly satellites participating in 
the STM architecture.  

• STM Service Suppliers (S3), who act as a concierge providing STM & 
compliance services to O/Os, serve as a link to the broader STM 
ecosystem, and procure services on behalf of O/Os.  

• Space Situational Awareness (SSA) Suppliers, who are responsible 
for acquiring and fusing sensor observations with cooperative 
tracking data from O/Os to generate and maintain a catalog of space 
objects. SSA is a key example of an STM service that currently exists 
independently, therefore called out separately from S3. 

Acronyms 

AI Artificial Intelligence 
AMA Automated Maneuver Advisor 
AGI Analytical Graphics, Inc. 
API Application Programming Interface 
ARC Ames Research Center 
CAS Conjunction Assessment Supplier 
CCSDS Consultative Committee for Space Data Systems 
CDM Conjunction Data Message 
COLA Collision Avoidance 
CSpOC Combined Space Operations Center 
FAA Federal Aviation Administration 
HIE High Interest Event 
IADC Interagency Space Debris Coordination Committee 
MDP Markov Decision Process 

MSMA Multi-spacecraft Maneuver Advisor Algorithm 
NORAD North American Aerospace Defense Command 
O/O Owner/Operator 
PoC Probability of Collision 
RSO Resident Space Objects 
S3 Space Service Supplier 
SDC Space Data Center 
SG STM Gateway 
SSA Space Situational Awareness 
STK Systems Tool Kit 
STM Space Traffic Management 
TCA Time to Closest Approach 
TCL Technology Capability Level 
TLE Two Line Elements 
UI User Interface 
UUID Universally Unique Identifier  

1 CSpOC was called Joint Space Operations Center (JSpOC) until July 18, 
2018. 
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• Conjunction Assessment Suppliers (CAS), who are responsible for 
screening objects against SSA catalogs for potential conjunctions, as 
well as verifying collision avoidance maneuvers proposed by S3s.  

• Supplemental Data Suppliers (SDS), who provide other relevant data 
and services. Examples might include precision atmospheric 
modelling data to reduce errors in spacecraft orbit propagation or 
space weather warnings. 

The roles and responsibilities are described in functional terms 
because the STM architecture makes no assumptions about the type of 
actor who would provide a given service (government, non-profit, or 
commercial) or regarding the separation of roles across actors. Multiple 
roles might be fulfilled by a single conceptual or legal entity. For 
example, a large O/O who flies many satellites might choose to act as its 
own S3 or contract with an outside provider. As space traffic gets more 
complex, new functions may be developed within an existing CAS or S3, 
or they may contract with an outside provider. For example, if a CAS has 
informed an S3 of an imminent conjunction and the S3 needs guidance 
on maneuver options and trade-offs, the S3 may use their in-house 
planning tools on CAS-provided data, request the CAS perform the 
analysis, or request an external service (e.g. Automated Maneuver 
Advisor (AMA) which automates tradespace analysis and maneuver 
advice) to use their custom planning tools on S3-provided CAS data 
related to the conjunction. New services added to the STM network may 
even be hardware services provided by entities that do not fall into any 
of the above categories (neither operators, brokers, software nor data 
suppliers). For example, de-orbit services may be supplied to operators 
of non-maneuverable spacecraft by external providers of such mecha-
nisms (e.g. rendezvous chasers, tethers, robotics arms, lasers, aero-
dynamic decelerators). 

The STM Gateway is a management role within the proposed archi-
tecture that will handle certain basic functions like registration, dis-
covery, authentication of participants, and auditable tracking of data 
provenance and integrity. This open-access architecture allows any user 
to join the system, after reliable authentication, and be discoverable as a 
new participant by a centralized registry of participating entities or 
various decentralized discovery techniques. We can thus accommodate 

users ranging from small academic Cubesats to proposed mega- 
constellations with thousands of satellites, while addressing their 
customized needs for communications, interoperability, regulation, and 
protection of proprietary data. The APIs and data models present a low 
barrier to entry for new or existing STM actors and/or services. As long 
as these interfaces are followed, STM is expected to serve as a non- 
hierarchical marketplace for services that can accommodate future 
regulatory requirements, and integrate data from multiple sources, 
providing information to those who need it to behave responsibly, while 
being responsive to source-imposed restrictions on sharing. Decentral-
ization also implies that new nodes can be added scalably, and common 
standards allow software developed for one supplier to be reused and 
interoperate with another. 

We have deployed a research platform within a simulation lab at 
NASA Ames. The goal is to visualize, assess, and validate our proposed 
STM architecture and performance under increasingly complex use 
cases, grouped into technical capability levels (TCL). The TCLs provide 
an evolutionary path to implement a software prototype of the proposed 
STM architecture and its application to groups of use cases. Our STM 
prototype is based on modern micro-service architecture adhering to 
OpenAPI standards and deployed in industry-standard Docker con-
tainers,2 facilitating easy communication between different participants 
or services. Automation and autonomy will be indispensable in the 
efficient implementation of the architecture and its services. Automation 
in STM includes syncing multiple catalogs of resident space objects [14], 
while autonomy examples include rapid communication or negotiation 
between operators and cost-benefit trade-offs for spacecraft maneuver 
selection to prevent impending conjunctions between multiple active 
spacecraft. This paper describes the prototype and its application to 
on-orbit operations for a collision avoidance and maneuver planning use 
case, per civil/commercial catalogs. Once development is complete, the 
intention is to open source the platform code to enable use and further 
development by all stakeholders interested in participating in an STM 

Fig. 1. Space Traffic Management architecture proposed by NASA Ames Research Center, as detailed in Ref. [14,15]. The Concept of Operations (ConOps) is based 
on NASA’s successful UAS Traffic Management architecture that has been developed in partnership with the FAA. 

2 Docker is a set of platform as a service products that use OS-level virtual-
ization to deliver software in packages called containers. 
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ecosystem, as well as eventual transition to the appropriate regulatory 
agency for use in operations. 

2. Software prototype of the STM architecture 

The STM software prototype implements the ConOps of our proposed 
architecture (Fig. 1) in successive TCLs, similar to the manner in which 
NASA’s UAV Traffic Management (UTM) software prototype [16] was 
developed. UTM refers to the system that can integrate unmanned aerial 
vehicles (UAVs) safely and efficiently into air traffic that is already flying 
in low-altitude airspace, so that they do not interfere with helicopters, 
airplanes, nearby airports or even safety drones being flown by first 
responders helping to save lives. UTM is currently being handed to the 
FAA for operational use via the NASA UTM Research Transition Team 
that was formed to ‘collaboratively explore concepts, develop pro-
totypes, and demonstrate a possible future UTM system to enable 
large-scale low altitude UAS operations’ [16]. Borrowing insights from 
UTM’s success, the proposed STM ConOps is aimed to integrate existing 
vehicles and new orbital entrants safely and efficiently into the space 
above the Von Karman Line. 

We used the iterative Software Development Life Cycle (SDLC) pro-
cess to develop the STM prototype. SDLC’s phases included creating a 
detailed plan for our requirements analysis, definition, product design, 
architecture, development, testing and deployment. This section pre-
sents our implementation of the system software based on the proposed 
STM architecture (each role is an ‘application’) and describes the func-
tional elements and their interactions using activity diagrams and API 
structures. A prototype implementation is demonstrated from the front 
end perspective (for all roles in Section 1) in the following video: 
https://sreejanag.github.io/Videos/AmesSTM_demo_2019.mp4 

The STM architecture requires applications (S3, STM Gateway, CAS, 
SSA) to interact as loosely coupled services, making the microservices 
architectural pattern a strong fit for STM implementation. Microservices 
allow the construction of small independently versioned and scalable 
customer focused services with specific business goals which commu-
nicate with each other over standard protocols with well-defined in-
terfaces. As the services are independently deployable and scalable, each 
service also provides a firm module boundary. Other benefits of 
microservices have been listed in Appendix A. 

2.1. STM software stack 

The STM software stack is an implementation of our proposed STM 
architecture, intended to provide the basic functions (yellow box in 
Fig. 1) and serve as a portal to allow seamless interaction of roles and 
services (green boxes in Fig. 1). It was designed to be simple, highly 
extensible and modular, while utilizing as much open source technology 
as possible. The main components of the stack are listed below, and the 
selected technology used for each component italicized. The public 
software developer ecosystem was studied to choose stack technologies 
(comparison and selection described in Appendix B) which would be 
easy to implement, and is well supported by a reputable open source 
community. 

User Interface (UI) webpages have been developed for the STM 
gateway (SG) and S3. The SG UI currently supports basic functions of 
registration and discovery, providing capabilities for STM managers to 
manage and verify interfaces between S3-CAS-SSA. The current S3 UI 
supports O/O registration, setting up screening requests to the CAS, and 
displaying results from the CAS. We selected Angular 5, a modular and 
extensible web and UI development framework to provide capabilities 
such as notifications, integration with web exchange protocols. For the 
web server technology, we chose Express due to its extensive routing 
features including routing, separating handlers (put, get, post, etc), 
static file serving, and a framework that many popular template engines 
can plug into. 

Application Program Interfaces (APIs) are an effective interface 

mechanism to share functionality amongst independent applications/ 
programs while maintaining code separation. STM APIs have been 
developed to provide interfaces to CAS, SSA, S3 and SG, using simple 
http protocols. Our requirements for API were to develop a door/inlet 
into each service (CAS/SSA/S3/SG), allowing other programs to 
securely interact with it without the need to share any code. Node. JS, a 
Javascript-based runtime environment that remains lightweight and 
efficient in the face of data-intensive real time applications, was chosen 
as the preferred API framework. We use SwaggerHub, an API develop-
ment platform that leverages the core capabilities of the open source 
Swagger framework to build, document, manage, and deploy the STM 
APIs. 

Databases (DB) were created for storing user authentication and 
authorization, storing requests, responses and configuration details. Our 
requirements from a DB were a simple setup, to be Docker friendly (to 
deploy easily, as described in Section 2.2), allow JSON-like binary data 
points (BSON). MongoDB was chosen as the database technology 
because it met the said requirements in a scalable and flexible way. It is 
open source, document-based, and can change streams to push updates 
across and from various service providers and STM roles. 

To summarize the prototype implementation of functions and roles 
within our proposed STM architecture: SG and S3 have been developed 
in Angular (UI) and Express (web server). Their sequence diagrams and 
functions will be explained further via the use case in Section 3. The 
example CAS has been developed in MATLAB and Analytical Graphics, 
Inc’s Systems Tool Kit (STK) software, and its structure is described in 
Ref. [17]. Its utilization for complex maneuver planning will also be 
explained further via the use case in Section 3. The example SSA draws 
primarily from the space-track.org database that lists the most recent 
Two-Line Element (TLE) ephemerides, as provided by CSpOC as a free 
service to the public and satellite operators. We are currently testing UT 
Austin’s integrated database3 [12] of various SSA sources (including 
CSpOC) as an alternative SSA example. The S3, CAS, and SSA are hosted 
on separate servers to mimic disjoint entities within the STM network. 
Currently, we have implemented an example AMA in Python inside the 
CAS application, on the same server. However, since it exchanges in-
formation with CAS using pre-defined APIs, the AMA and CAS can be 
separate entities as well. Fig. 2 shows the STM test bed in terms of 
functions within the prototype implementation, while Fig. 3 shows the 
chosen technologies. Deployment and information flow sequence will be 
described in Section 2.2 and 2.3, respectively. 

2.2. STM stack deployment 

The STM stack was developed and deployed into Docker containers 
in the microservices architecture. Docker containers are lightweight 
compared to virtual machines making them resource effective. They 
provide uniformity across development and production environments, 
making deployment agnostic to the operating system. They are suitable 
for continuous integration and deployment, with consistency across 
multiple development and release cycles, and have an excellent support 
base with several official supported containers. The Dockerized, and 
thereby standardized, STM environment has allowed repeatable devel-
opment, build, test and production. 

The current STM stack as deployed is illustrated in Fig. 3. While it 
can support multiple S3/CAS/SSA or other services, per the STM ar-
chitecture and marketplace described in Section 1, only one instance of 
each has been shown. The stack was verified on Windows 10, Mac OS 
10+, and Ubuntu. NASA’s stringent security requirements prevent 
admin access on any host machine. To work within NASA security pa-
rameters, which is perhaps representative of siloed application re-
strictions that STM is expected to operate in, the containers are deployed 

3 AstriaGraph page accessed on October 2, 2019: http://astria.tacc.utexas. 
edu/AstriaGraph. 

S. Nag et al.                                                                                                                                                                                                                                      

https://sreejanag.github.io/Videos/AmesSTM_demo_2019.mp4
http://astria.tacc.utexas.edu/AstriaGraph
http://astria.tacc.utexas.edu/AstriaGraph


Acta Astronautica 180 (2021) 489–506

493

inside a Virtual Machine (VM). We used Ubuntu 14 as the VM to deploy 
the application containers. SG and S3 applications were available over 
http in a web browser, and will be extended to https for future imple-
mentations. SG and S3 have two containers each: MongoDB, Express +
Node. The hosted Express servers which rendered the Node. JS API and 
the compiled Angular app were rendered as HTML + JS pages. Data 
persistence is achieved by configuring the MongoDB to allow the SG and 
S3 to store the data files on the host machines. 

2.3. APIs and interactions 

Since STM’s core benefit is the availability of common APIs and data 
models that roles can use to interact with each other seamlessly, we 
defined them on SwaggerHub. Every piece of information exchanged 

between two containers or servers in Fig. 3 would invoke a Swagger 
request that adhered to defined APIs. For example, the OpenAPI model 
of the SSA response to an orbit data request is seen in Fig. 4. In this 
example, the SsaOrbitDataMessage model consists of the SsaRSO 
(“Resident Space Object”) field, which specifies the catalog used and 
identifier within the catalog, and the SsaODM (“Orbit Data Message”) 
field, which contains the ephemeris data for the object. This information 
is transmitted as a JSON object. The nature of the pull requests to the 
SSA catalogs and publication/subscription of data will be sensitive to the 
regulations of the data sources. For example, the ingestion of SDC data 
can regulated by the SDA and available only to members, data from 
commercial providers like ExoAnalytic or LeoLabs can be subject to a 
fee, and advanced service access CSpOC data may need an SSA sharing 
agreement with the United States Strategic Command [15]. Once a 

Fig. 2. Current STM Testbed showing the functions for SG and one S3 instance, interacting with one CAS and one SSA. The architecture supports multiple instances 
of services (S3, CAS, SSA, etc.). 

Fig. 3. Current deployment structure of the STM stack. Arrows represent flow of information. Only one instance of services (S3, CAS, SSA) is shown, however 
multiple are possible. 
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connection is authenticated, APIs of varying complexities (very simple 
example in Fig. 4) can be used to exchange data in keeping with in 
keeping with National Space Traffic Management Policy’s Open Archi-
tecture Data Repository, and other existing standards by CCSDS. 
Reference [14] Section V⋅C describes proposals for automating catalog 
access. Similarly, all interactions between service providers and with SG 
can occur through such APIs and have been implemented in our STM 
prototype as described below. 

The SG manages the basic STM functions (e.g. registration, discov-
ery) that allow interactions between S3, CAS and SSA. Each S3 can 
register with the SG using a self-generated UUID identifying it uniquely. 
It stores CAS, SSA and S3 configuration settings via the S3 + SG API in 
MongoDB (Fig. 3). STM’s core customers are the spacecraft O/O’s, and 
any S3 supports O/O registration and O/O sign-in. The S3 login page is 
shown in Appendix C (#1). 

Fig. 4 is a sequence diagram of typical interactions between the STM 
service providers for screening and collision avoidance services. S3 may 
invoke a screening request for the O/O’s spacecraft at a pre-determined 
frequency or on an as-necessary basis, as seen in the UI screenshot in 
Appendix C (#2). The request specifies the O/O’s unique ID and prop-
erties. The UI also allows the S3 to enlist their choice of SSA and CAS 
provider for the request. Appendix C (#2) also shows the S3 discovery of 
CAS and SSA registries via APIs. These registries are published by the SG. 

Once the screening request is submitted by S3, it invokes the S3+SG 
API for user authentication, authorization, storing and retrieving 
screening requests and responses, and then invokes the CAS API. These 
APIs are exposed securely by the SG. The CAS server, upon receiving the 
request, invokes the SSA server using the SSA API to retrieve the most 
updated TLE and state information on all spacecraft. The SSA server log 
can be seen in Appendix C (#3). Note that this workflow assumes that 
the CAS, SSA, CAS-AMA servers are set up (running and ready to 
receive) before the S3 launches its requests. 

Upon receiving the SSA response via API, the CAS server initiates the 
screening process using an example conjunction assessment application 
running on proprietary software (in our case, MATLAB and AGI STK). 
Appendix C (#4) shows the screenshot of this step. The CAS app pro-
cesses the screening results received from MATLAB and STK, then in-
vokes an API to return Conjunction Data Messages (CDM) to the S3. Each 
potential conjunction is selectable on the UI, so that the S3 can identify 

High Interest Events (HIE) among the CDMs that warrant more analysis 
and re-submit to CAS to re-run with more accurate SSA sources and to 
observe how the event evolves over time. Accurate observations are 
fundamental to planning for space safety [18], therefore the ability to 
task additional observations based on covariances for a potential 
conjunction is an important assurance feature in STM. The current 
prototype allows the S3 to select HIEs from the list of CDMs that they 
would like to plan maneuvers for. Appendix C (#5) shows a screenshot 
of the API as visible to the user in this step. Submitting the planning 
request (‘Get maneuvers’) invokes the CAS API, which then calls the 
AMA tool (currently housed inside CAS). 

Once the maneuver request is submitted by S3, it invokes the CAS- 
AMA API which starts the AMA application and runs the maneuver 
planner. An example scenario will be described in Section 3 showing the 
iterative nature of interactions (specifically in Section 3.3) between 
AMA, CAS and SSA in scheduling maneuvers for multiple satellites 
involved in frequent conjunctions. After completion, the AMA responses 
are currently stored on the CAS server and may returned to the S3 in the 
form of graphs and data files characterizing the ‘proposed maneuvers’. If 
more than one maneuver sequence is proposed, the S3 may recommend 
one ‘accepted maneuver’ in consultation with the O/Os, following which 
the O/O makes the orbit correction, and the S3 pushes the updated orbit 
ephemeris to the SSA. In turn, the SSA makes the information available 
to the wider STM network so that every other operator now has access to 
updated information. Throughout the process, security between S3 and 
SG is maintained with a combination of token and UUID for each S3. 
MongoDB stores the user(s), screening request and response, system 
logs, and interacts with the other applications using the S3 + SG API to 
MongoDB (Fig. 3). 

3. Application to sequential conjunctions and planning collision 
avoidance 

The STM prototype was used to test conjunction assessment and 
COLA use cases that represent complex, cascading behaviour. Current 
state of the art is that spacecraft operators get an email from CSpOC or 
another automated SSA/CAS service informing them of future con-
junctions involving their spacecraft, and if they have maneuvering ca-
pabilities, they execute a COLA maneuver. There is rarely coordinated 

Fig. 4. Example OpenAPI model of the SSA response to an orbit data request.  
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planning (or even communication exchange) between operators, and at 
the current orbital population, rarely a series of consecutive conjunc-
tions expected for the same satellite in a few days. Therefore, realisti-
cally based on conjunction uncertainty and operator preferences, doing 
nothing may often be the least risky (and least expensive) path. How-
ever, rare occurrences of mischaracterization have lead to catastrophic 
and near-permanent damage in space. For example, the Iridium 33 
collision with the defunct Kosmos 2251 in 2009, resulting in >2000 
pieces of debris >10 cm, was caused due to uncertainty in SSA data, 
inadequate methods of orbital determination, and the absence of wide 
data sharing that limits planning under uncertainty [19]. More recently, 
ESA’s Aeolus satellite maneuvered to mitigate a conjunction with a 
SpaceX satellite in September 2019, after failed communication with 
SpaceX when PoC grew rapidly in the days before the conjunction, and 
ensuring a final miss distance of 306 m [20]. As SpaceX increases its 
Starlink constellation size to 7500+ (albeit maneuverable) satellites 
[21], such conjunctions are expected to become more frequent, and 
COLA maneuvers may have imminent, sequential impact on following 
conjunctions in a ‘cascading’ fashion. While the UN Committee on the 
Peaceful Uses of Outer Space guidelines for enhanced registration makes 
it easier for operators to get in touch, an automated pipeline for S3 
communication, negotiation, and decision-making will improve effi-
ciency across constellations owned by disjoint entities. 

Our proposed STM architecture allows participants to pull from 
continuously updated individual SSA sources or well-integrated groups 
of sources (example format suggested in Section 2.3), and to publish O/ 
O provided information automatically to such sources (start and end of 
sequence in Fig. 4). We have developed an example CAS [17], that is 
capable of automated (A) conjunction screening, i.e. 1-vs-all or N-vs-M 
conjunction predictions, (B) encounter identification to flag HIEs from the 
conjunction list based on pre-determined threshold probabilities of 
collisions (PoC), covariance errors allowed, etc., (C) maneuver generation 
to list possible COLA strategies to avoid the HIE, and (D) maneuver 
screening, i.e. conjunction assessment for the resultant satellite orbit if 
the O/O were to execute any of the COLA strategies. CAS interacts with 
S3 via standard APIs to provide CDMs; S3 chooses HIEs among the CDMs 
and submits a maneuver planning request to CAS (Fig. 4). Reference 
[17] describes the example CAS, the algorithms used to enable the above 
A-D steps, and the trade-offs between the COLA maneuvers generated 
for consideration. This paper extends the CAS capability to introduce 
planning and scheduling a sequence of efficient maneuvers to clear 
conjunctions by maximizing a reward function that factors in 
system-wide conjunction risk among an arbitrary set of satellites. The 
maneuver planner is currently internal to the example CAS (‘generate 
proposed maneuver’ in Fig. 4), however it can be a separate service that 
uses data exchanged between the CAS and SSA. The CAS returns a list of 
proposed maneuvers to S3, which selects a maneuver and implements it 
in consultation with the O/O, after which the new TLEs are updated in 
STM (Fig. 4). 

To demonstrate the capability of the STM prototype in a COLA 
sequence, we conducted a case study involving sequential conjunctions 
between six active satellites over a one-week period, overseen by an S3. 
Current state of the art maneuver planning executes steps A-D in 
sequence and is sufficient for infrequent COLA decision-making by a 
single active satellite against debris or non-cooperative satellites. It may 
also be extendable to multiple conjunctions between that satellite and 
the already identified piece(s) of debris. Maneuver planning for multiple 
controllable agents with frequent conjunctions is more complex; it re-
quires steps A-D to be executed iteratively as an algorithm searches 
through the planning horizon for an optimum sequence of maneuvers. 
This case study demonstrates the STM prototype’s ability to seamlessly 

exchange information among various service applications on different 
platforms and servers, in keeping with process flow in Section 2.3, to 
enable continuous and iterative collision prediction and control. While 
the example planner is a system-wide reward-maximizing, greedy 
scheduler that outputs a schedule for COLA actions by each satellite, it 
paves the path for new research in satellite maneuver planning, sched-
uling and negotiation across disjoint entities, enabled by the availability 
of an STM network. It is extendable to conjunction scenarios with non- 
maneuverable satellites or non-cooperating actors or debris (which are 
assumed to have right of way) by selecting the active maneuverable 
satellites and optimizing for rapid communication, negotiation and 
maneuver planning among them, given known constraints. 

3.1. Conjunction screening and encounter identification 

For a one week period starting May 20, 2010, we simulate an S3 that 
is responsible for 6 spacecraft (NORAD ID # 10676, 25419, 25477, 
41918, 42809, 42961) belonging to one or many operators, henceforth 
called primary spacecraft. When sending the screening request to the 
CAS, the S3 sets the “do-not-violate” thresholds on PoC to be 1e-6 and 
the spacecraft error ellipse to be 20 km × 10 km × 5 km, in the along 
track, cross track and radial directions. While this PoC is more conser-
vative and the error ellipse far larger than typical, we set it so that 
several sequential conjunctions are detected and collision avoidance 
maneuvers have a good chance of inducing new additional high-risk 
conjunctions over the study period, without having to forcefully in-
crease the satellite population beyond the current database. The aim is 
to mimic a scenario when the population is much larger, and therefore 
where sequential conjunctions are commonplace, and therefore there is 
significant risk that moving will make conjunctions worse and cost fuel 
to the operator satellite. 

While true PoC is a more accurate metric to assess risks, it is 
computed by integrating a three-dimensional probability density func-
tion that quantifies the uncertainty of the relative position between any 
two satellites. Since we did not have access to the covariances of the 6 
primary satellites, an alternative measure of risk called maximum PoC 
(Max PoC) was used, which is the worst-case PoC possible for a given 
conjunction geometry. The CAS performed the request by executing 
MATLAB code that automated an instance of AGI STK and AdvCAT, an 
add-on conjunction analysis tool. A one-versus-all screening is carried 
out, i.e. the orbit of each of the 6 primaries is compared to the orbits of 
all remaining RSOs over a week of simulation. For simplicity, STK’s 
HPOP propagator was used with TLE-derived state vectors as initial 
conditions. 

Based on these parameters, ~50 conjunctions or encounters were 
returned as CDMs by CAS to S3, and are referred to as primary con-
junctions. Encounters identified are those whose Max PoCs violate the 
PoC threshold during the scenario time period. 

3.2. Maneuver generation and screening 

Candidate COLA maneuvers are generated to mitigate the primary 
conjunctions using the analytical formulation of Bombardelli and 
Hernando-Ayuso [22], implemented on MATLAB. Given an impulse 
budget ΔV and maneuver location Δθ before the Time to Closest 
Approach (TCA), this algorithm finds the optimal impulsive ΔV vector 
orientation that maximizes the miss distance between two objects at 
TCA. Future work may optimize the in-track, radial, cross-track di-
rections of thrusting such that COLA actions may be incorporated into 
regular station-keeping (e.g., prograde in-track burns are almost free for 
a circular orbit). As with other elements of the CAS, note that it can 
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replaced by another algorithm, should it be more appropriate. 
The goodness of a maneuver is determined (screened) not only by the 

extent to which the primary conjunction was mitigated, but also by 
additional conjunctions that the maneuver causes. A secondary 
conjunction is a post-maneuver conjunction between the primary satel-
lite and the same secondary RSO that resulted in the HIE, which moti-
vated the maneuver. A tertiary conjunction is a post-maneuver 
conjunction between the primary satellite and a completely different 
RSO. 

The maneuver planner is informed by insights from several case 
studies, three of which are documented in Ref. [17] - a HIE between an 
active satellite and debris object, an active satellite against four others, a 
head-on conjunction between two satellites in very similar orbits. The 
results show that primary conjunction mitigation and minimizing new 
secondary/tertiary conjunctions are conflicting objectives even for a 
single maneuverable satellite to avoid a single HIE (Figs. 5, 7 and 8 in 
Ref. [17]). Therefore, an inclusive objective function is required for 
optimum planning. For multiple sequential conjunctions, at any given 
point in time before TCA, there may be multiple maneuver choices by a 
satellite, depending on which conjunction it is trying to avoid. Fig. 5 
shows candidate maneuvers by a satellite (NORAD #15333) in order to 

avoid imminent collisions with four RSOs (in four colors, where the 
legend contains their NORAD IDs). The original Max PoC of each event is 
shown as dashed lines; the TCA for each event corresponds to the point 
where the dashed and solid lines intersect. The markers represent the 
reduced Max PoC if a ΔV = 1 m/s maneuver is executed at the said 
epoch. Between 22 and 26 h after the screening epoch, NORAD #15333 
may choose to execute the red or green maneuvers in order to avoid 
NORAD #41343 and #36155 respectively. Therefore, each time step in 
the planning horizon can be considered a Markov Decision Process 
(MDP) for the satellite #15333. In the figure, screening epoch is defined 
as the simulation start time. 

While this example shows the importance of multi-objective opti-
mization (reward proposed in Equation (1) may be used) to select a 
maneuver or a combination, the controllable, decision-making agent is 
still a single S3 managing a single spacecraft. For generality, the main 
case study in this paper shows sequential conjunctions between multiple 
controllable spacecraft and involves a maneuver tradespace for every 
spacecraft, and every conjunction. The O/O(s), mediated by their S3(s) 
and informed of the tradespace by their CAS, are expected to consult, 
plan and decide which maneuver is to be selected. 

Fig. 5. Sequence Diagram for interactions between the STM Gateway and various roles/providers in the STM network for the screening and conjunction assess-
ment workflow. 
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3.3. Maneuver planning 

An example system-wide reward function for maneuver planning is 
proposed in Equation (1). In the presented case study, Equation (1) is 
evaluated for a set of potential collision avoidance maneuvers on a per- 
HIE basis, but this function could also be cumulatively added over time- 
steps to support alternative planning algorithm designs. It maximizes 
mitigation benefit minus cost across all controllable spacecraft, so that 
the space ecosystem is safer and more efficient as a whole. The process of 
implementing it across disjoint entities is the credit of the STM architec-
ture and its software prototype, per the process in Section 2.3.   

P = − ∞ if PoC(t+Δt)> th0, otherwise (2) 

The first term in Equation (1) captures the extent of mitigation of the 
primary conjunction, ignoring conjunctions with max PoC two orders of 
magnitude or more below the HIE threshold PoC. The second term 
captures the required delta-V of the maneuver in m/s. The third term 
captures the total PoC of secondary conjunctions introduced due to the 
maneuver, again disregarding conjunctions with max PoC two orders of 
magnitude or more below the HIE threshold. If a maneuver changes the 
time of the primary conjunction but does not eliminate it, this will be 
recorded as a secondary conjunction. The fourth term captures the total 
PoC of tertiary conjunctions introduced due to the maneuver (those with 
an RSO not involved in the mitigated conjunction). These conjunctions 
are also filtered to remove any more than two orders of magnitude below 
the threshold max PoC and additionally weighted by the time until the 
tertiary conjunction, so that conjunctions with the entire space 

ecosystem that are far into the future do not overshadow immediate 
ones. A log is used to reduce the severity of fall-off in the value of future 
conjunctions. The fifth term is a constant cost to plan any maneuver, so 
that a single maneuver is preferred to multiple ones to mitigate potential 
impact to the primary mission, all else being equal. This term is irrele-
vant for the implemented greedy per-conjunction algorithm, but is 
important for state-space search algorithms to capture practical prefer-
ences; e.g. operators prefer to advance or defer pre-planned station- 
keeping maneuvers if they do decide to move their spacecraft for COLA. 
The sixth term (P) is a policy term that is set to –∞ if any PoC (new 
primary PoC, or any secondary or tertiary PoC) is greater than the 
threshold PoC that flags an HIE, within a pre-defined Δt, because any 
maneuver that creates an new highly probable conjunction within a 
short horizon is deemed unacceptable. For the greedy algorithm, no Δt 
was used, simply requiring all HIEs to be cleared before they occur. The 
weights wx are set by the S3, in keeping with their customer/operator’s 
priorities of the above described parameters. All were set to unity for this 
case study. The scaling factor sx for every term is automatically deter-
mined by the planner, based on the available set of maneuvers and their 
corresponding PoC, so that each term is of similar order of magnitude. Δt 
was set to two orbital periods. The reward function can take positive or 
negative values, with higher reward being better. 

Running a full factorial of maneuvers for all 6 satellites with the 
combinatoric of variations in the executing satellite, ΔV of the maneuver 
and the maneuver execution time (corresponding to Δθ in the orbit 
when ΔV is applied) is computationally unrealistic because it entails re- 
computing Equation (1) (i.e. re-propagating RSO orbits, and doing a 
computationally expensive search for conjunctions) thousands of times. 
Simulated annealing (a traditional global optimization method) with the 
above reward took 3–12 h to find the optimum maneuver sequence for 
sat #25419 alone, with ΔV = 1–10 m/s, a week of temporal search space 
and various combinations of tuning parameters. Algorithm complexity 
scales with the power of the number of satellites. Therefore it was 
deemed unfeasible for exploring multiple controllable satellites, pri-
marily owing to the computational load of the propagation and AdvCAT 
screening steps.  

Instead, we devised a Multi-Spacecraft Maneuver Advisor Algorithm 
(MSMA) that informs the example AMA. The MDP is formulated as a 
graph-based search space for every spacecraft [23] where the decision 
variable at any time step is a maneuver option, and the optimum path 
traces the time series of these maneuvers within feasibility constraints. 
MSMA has been implemented in Python and is housed within the CAS. It 
is a greedy algorithm to clear all conjunctions involving at least one of 
S3’s 6 spacecraft over the scenario time period. For each HIE in chro-
nological order, the algorithm (1) screens for potential conjunctions 
above an S3 or operator-specified risk threshold per Section 3.1, (2) 
generates a tradespace of COLA maneuvers for all S3 spacecraft, per 
Section 3.2 by varying ΔV and Δθ between an HIE-clearing maneuver 
and next HIE; (3) calculates the reward for each candidate COLA ma-
neuver per Equation (1) with PoCs computed per Section 3.2; (4) selects 
and simulates the COLA maneuver with the highest reward; (5) screens 
for HIEs and repeats this process until the system is free of HIEs from the 
start to end of the case study time period. 

Fig. 6. Example of sequential conjunctions and the maneuver options (varying 
Δθ only) generated for COSMOS 1603/NORAD ID: 15333 to mitigate them 
[17]. Maneuver performance is quantified by the post-maneuver screening, in 
terms of Max PoCs against the four spacecraft that caused the primary con-
junctions. Each square is a 1 m/s maneuver (ΔV) arranged by execution 
epoch (Δθ). 

ptr =w1 ∗ s1 ∗
[
new prim PoC ∗

{(
new prim PoC − th ∗ 10− 2)> 0

}
− old prim PoC

]

− w2 ∗ s2 ∗ ΔV
− w3 ∗ s3 ∗

∑
sec PoC ∗

{(
sec PoC − th ∗ 10− 2)> 0

}

− w4 ∗ s4 ∗
∑

tert PoC ∗
{(

tert PoC − th ∗ 10− 2)> 0
}

∗
1

log(timeToConjunct)
− w5 − P

(1)   
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Fig. 7. [top] Full tradespace of maneuvers generated by the planner, as a function of time of execution time (X-axis) and executing 6 satellites per the listed ΔV in km/s (Y-axis). The 13 conjunctions mitigated are 
indicated by vertical colored lines at TCA (label in bottom). The candidate maneuvers are shaded in greyscale in proportion to their reward. The chosen maneuver to mitigate a conjunction is shaded in the same color as 
the conjunction vertical it mitigates. [middle] Maneuver tradespace with their reward on Y-axis. The chosen maneuvers are joined with a black line and the cumulative reward (by integrating Equation (1)), obtained by 
adding up the reward associated with each maneuver to mitigate each conjunction. The maneuver markers and conjunction lines are color-matched throughout. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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Running the MSMA for the case study duration of 1 week identified 
and cleared sixteen conjunctions that included at least one of the six S3’s 
satellites and warranted a COLA action. Some of these conjunctions were 
present in the original scenario and some new ones were introduced by 
the proposed COLA maneuvers. Nonetheless, MSMA in the example 
AMA implementation reduced the total number of HIEs from ~50 
(screened in Section 3.1) to 16, and cleared all of them by distributing 
the COLA maneuvers across all 6 spacecraft. Fig. 6 shows the spread of 
the 16 mitigated HIEs as vertical lines of different colors, whose abscissa 
corresponds to their TCA epoch within the evaluated week. The units of 
the X-axis and conjunction time legend are in hours since 2020/05/20 
7pm UTC. Each conjunction is assigned a unique color; those that seem 
visually similar have been placed spatially apart to ease readability. 
Fig. 6 also shows the maneuvers considered and recommended by the 
MSMA to mitigate the said 16 conjunctions. The full list of conjunctions, 
TCAs, and the satellites and maneuvers selected to mitigate them are 
listed in Appendix D. 

For every conjunction from left to right in Fig. 6-top, MSMA gener-
ates M*N maneuvers per maneuverable satellite; across M propellant 
options (ΔV) and N epochs (Δθ) evenly spanning the time-space between 
the maneuver selected to avoid the previous conjunction (colored circles 
in Fig. 6-top) and the next conjunction (Fig. 6-vertical lines). The figure 
shows the full tradespace of M*N maneuvers considered per conjunction 
as circles, where the parameters of each maneuver are listed in the Y-axis 
(satellite NORAD ID and ΔV) and arranged by execution epoch (Δθ) in 
the X-axis. Colored circles represent the maneuvers that are recom-
mended by the MSMA, assumed to be selected and executed to prevent 
the conjunction (vertical line) of the same color. For non-selected ma-
neuvers, the darker the circle, the better that maneuver is according to 
Equation (1). Maneuvers that cannot clear a conjunction are assigned -∞ 
reward and plotted as open circles. One maneuver option (ID# 10676, 
ΔV = 7.5 m/s, last Δθ) has been removed from the plot since its 
extremely low reward of − 14.45 biases the greyscale. While N = 10, M 
= 3 in the results presented, they can be easily changed to improve 

fidelity at the cost of increased runtimes. 
While conjunctions may get added later (toward the right of the 

figure) due to maneuvers implemented to clear earlier conjunctions, it is 
possible that a particular maneuver mitigating a conjunction will induce 
a new conjunction after the particular maneuver but before the TCA of 
the mitigated conjunction. This happens in Fig. 6 when the third 
conjunction from the left (green) is mitigated resulting in another 
conjunction (yellow) with a TCA before the TCA for the green 
conjunction. Each of the resulting conjunctions are therefore also 
planned for and mitigated in sequence. The temporal flow of the ma-
neuvers is from one colored circle to the next, starting from the left and 
moving rightwards. 

The MSMA recommends the maneuver that clears the most imminent 
conjunction with the highest cumulative reward (maximizes Equation 
(1)), before planning for the next conjunction. Fig. 6-bottom shows the 
reward value of all potential maneuvers considered to avoid the 16 
conjunctions. The shape of the markers corresponds to the primary 
satellite that will execute the potential maneuver. For every marker 
shape (i.e. satellite), the color of the marker represents the conjunction 
(same colored vertical line) that maneuver is intending to avoid. There 
are M*N markers per shape and color to account for the 30 maneuvers in 
the tradespace per conjunction (for M = 3, N = 10). A thick black line 
connects the markers representing the selected maneuvers to be 
executed. Initially, a maneuver involving satellite 25419_1 is selected to 
mitigate the conjunction at time 4.56, then satellite 42809_2 moves to 
clear another conjunction at time 6.23, followed by Satellite 42961_3 
moving to clear a third conjunction (green) at time 25.46. This produces 
another conjunction (yellow) at time 23.28, which is again cleared by a 
maneuver. This continues until no conjunctions exist over the planning 
period. Candidate maneuvers that attain -∞ reward are not plotted. 

While none of the 16 conjunctions cleared were between the 6 S3 
satellites, if such an HIE were to be screened, the MSMA would choose 
the highest system-wide reward across the maneuver tradespace for both 
spacecraft, i.e. another stack of 30 circles for that conjunction in Fig. 6- 

Fig. 8. Development cycle of the STM prototype from the proposed architecture on the left (past work), to a software prototype which uses sample models or 
examples developed in-house as service entities in the middle (current state), to a higher fidelity software prototype which uses partners to represent service entities 
(future work). 
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top, and another 30 markers of the same color but different shape in 
Fig. 6-bottom. Only one satellite with the higher reward would ma-
neuver. This behaviour has been verified on single events, however it is 
difficult to replicate in a cascading conjunction scenario unless it is the 
first encountered HIE (clearing one HIE often clears other HIEs between 
two target satellites). The output in either scenario shows the temporal 
order of maneuvers to clear conjunctions over the planning period, 
where the MSMA successfully chooses the largest possible reward to 
clear each conjunction in a chronological sequence. This recommenda-
tion is then presented to the S3 for selection and then to the operator for 
execution via the STM framework. 

Per-conjunction reward maximization via MSMA does not neces-
sarily lead to global optima (global maximum reward), but it is signifi-
cantly more tractable and provides a reasonable baseline against which 
other more sophisticated solutions can be compared. More importantly, 
this simple example demonstrates the need of automated and distributed 
planning in a crowded future space environment where sequential 
conjunctions and cascading consequences of maneuvers to avoid them 
will be common. The STM architecture is expected to spur research in 
these areas, and the STM prototype is expected to enable testing them. 

3.4. Maneuver negotiation 

The planning example we presented involved a conjunction between 
multiple maneuverable satellites, all controlled by the same S3. If mul-
tiple maneuverable satellites within a CDM are controlled by different 
S3s, maneuver negotiation may be needed before accepting and pub-
lishing a maneuver. Currently in the absence of STM, such negotiations 
are rare and occur by email, telephone, or fax (if at all). More commonly, 
an operator simply informs CSpOC of an intended maneuver, evaluates 
screening results, and executes the maneuver without negotiation. This 
process has functioned thus far because conjunctions are rare—most 
conjunctions involve only one maneuverable satellite (the other being 
propulsion-less, e.g. CubeSat or debris)—and the overhead of negotia-
tion and legal implications has been perceived to outweigh the benefits. 
For example, the SDA process has successfully facilitated the negotiation 
that our MSMA system simulates, whereby multiple maneuverable 
spacecraft are coordinated by different S3s, namely the SDC and the 
18SPCS system. 

As conjunctions become more common and maneuvers result in 
cascading secondary or tertiary conjunctions, maneuver negotiation is 
envisioned when CDMs involve single or multiple maneuverable satel-
lites by different S3s. Consensus may be established by S3s communi-
cating through the STM network and APIs, or a brokering service that is 
an SDS within system. A future version of the STM prototype will define 
such APIs and implement example S3s (and brokers) to demonstrate the 
utility of such standardization. 

Who maneuvers may be decided by rule-based systems like those 
used by sailboats, Coasian-based payments based systems where one 
would pay the other to maneuver and determine a price cheaper than its 
own cost to maneuver (e.g., a currency quantification of Equation (1)), 
auction-based systems where such payment prices are bid and counter- 
bid between the negotiators, resource-based systems which choose the 
higher reward or lower cost operator (e.g., evaluated using Equation 
(1)), dual-maneuver implicit cost split where both maneuver with 
equitable cost (e.g., by optimizing the total reward across both operator 
satellites using Equation (1)), or “space chicken” where it is assumed 
that one operator will eventually decide to move to avoid an imminent 
HIE. These are discussed in detail in Ref. [14]. Modifications to quan-
titatively account for practical preferences such as fuel weight in reward, 
combining COLA maneuvers with pre-planned station-keeping or 

trusting the more experienced operator with maneuvers are possible for 
all proposed systems above. Research on such topics will need to take 
into account rules for public sharing of information, disparity in reward 
definitions or weights across operators, commercial incentive to 
over-report mission impact or under-report efficient maneuvers to avoid 
action, fairness over time so that the onus of action is equitable (an 
operator is in some way credited for previous maneuvers when consid-
ering the next required maneuver), etc. 

4. Conclusions and future work 

The STM research platform at NASA Ames has workstations, servers 
and a hyperwall, with NASA and AGI software suites, and is leveraging 
the UTM experience and codebase for STM development. Fig. 7 shows 
our development process from left to right: we have proposed an STM 
architecture in the past, summarized in Fig. 1 [14,15]. The current paper 
describes the software prototype we have developed using example 
service providers (e.g. CAS, AMA, SSA), and in-house sample models 
[17] or publicly available algorithms for internal functions of the ser-
vices. We are now involving early partners in industry, academia, and 
government who will be potential operators and higher fidelity service 
providers, i.e. potential customers of the STM network. The modular, 
containerized architecture ensures that they will interact only through 
APIs and data models, without having to share any proprietary internals 
of their software. The presented prototype of the STM architecture is for 
an initial version of TCL1 (on-orbit operations with civil catalogs). The 
architecture and prototype will be matured over the TCLs defined in 
Ref. [15] Fig. 8, and as we improve our use case portfolio and increase 
partners. The process in Fig. 7 is expected for every TCL. 

The STM architecture and standardization of interaction between 
entities paves the way for a research ecosystem similar to other AI/au-
tonomy fields, such as UAS or self-driving cars. Some planning and 
scheduling scenarios are listed below in terms of increasing complexity: 

1. Single maneuverable satellite to avoid a conjunction with an unco-
operative target  

2. Single maneuverable satellite to avoid conjunction with a single 
maneuverable satellite, both controlled by the same S3  

3. Multiple maneuverable satellites to avoid sequential conjunctions 
with multiple maneuverable satellites, all controlled by the same S3  

4. Multiple maneuverable satellites to avoid sequential conjunctions 
with multiple maneuverable satellites, controlled by different S3s 

We applied the STM prototype to a multi-satellite scenario that 
required sequential COLA actions to prevent frequent ‘cascading’ con-
junctions (#3). The scheduling algorithm in our example AMA is 
capable of handling scenarios #1, #2 and #3, and we discuss the 
negotiation implications required to extend to #4. We also presented an 
example reward function and an example planning algorithm to advise 
on the schedule of COLA maneuvers across multiple satellites. Simple 
examples in this paper are expected to serve as a strawman for future, 
high fidelity STM services acknowledging that there may be un-
certainties in the quantification of risk and reward models given the 
international complexity of the STM environment; e.g. COLA with 
government/military satellites of a different country whose operator is 
unknown. While this paper focused on CAS and COLA related applica-
tions of autonomy within the STM, there is future scope for AI/auton-
omy development for other aspects of STM such as validating and 
merging SSA catalogs (e.g. with SDC APIs), decision-making as a func-
tion of uncertainty in data unavailability, and COLA as a function of 
varying levels of data sharing, as discussed in detail in Ref. [14]. 
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Appendix A. Benefits of MicroServices 

We used a micro-service architecture to deploy the STM prototype owing to the following major benefits [24,25]:  

• Complexity localization — Services are self-contained, independent applications. The development team for each service (S3, CAS, etc.) is only 
concerned with understanding the complexities of their service. Other teams only need to know what capabilities are being provided by the other 
services; they don’t need to know how they work internally.  

• Cross-cutting business functionality — Eliminates the need to reinvent standard pieces of functionality used across the organization multiple times; 
for example, authentication and user management.  

• Increased resiliency — Since a number of services communicate simultaneously, when one fails, the client should be designed to allow its neighbors 
to continue functioning as it steps out as elegantly as possible. Improved fault isolation means an uninterrupted user experience.  

• Better scaling, efficient system optimization and organization — Scaling decisions can be made at a more granular level.  
• Output flexibility — Simplified data extraction.  
• Real-time processing support — The publish-subscribe framework facilitates data processing in real time.  
• Support for best technology selection — One is not limited to a single technology set for the overall project. Each microservice can be developed 

using the most appropriate programming language and data storage technology for its function.  
• Scalability — High level of code and data reuse, making it faster and easier to deploy additional services to address new use cases.  
• Security flexibility — Allows applications to segment off and outsource their non-core business functions without disclosing core services.  
• Experimentation flexibility — Ability to try out a new technology stack on an individual service. Compared to monolithic designs, any dependency 

concerns will be smaller and rolling back changes is simpler. It also eliminates any long-term commitment to a single technology stack.  
• Coordination — Uses event-streaming technologies to enable easy integration compared to the heavyweight inter-process communications 

protocols. 

Appendix B. Technology Comparison between Software Stack Components 

The web frameworks considered for User Interfaces were:  

• Angular 2+: Popular framework, large support community, MIT license, maintained by Google.  
• React: Supported by Facebook, large developer support community.  
• Django: Python web-framework, high scalability, offers high security, provides rapid development. 

Angular 5 was chosen as the web development framework due to its small package size, extensibility, support of simple progressive web appli-
cation, material design, in-build code optimization, extensive capabilities to interface with APIs and our familiarity with it. 

The Application Programming Interface frameworks considered were: 

• Node. JS: Javascript-based runtime environment providing non-blocking, event driven servers due to its single-threaded nature; remains light-
weight and efficient in the face of data-intensive real time applications that run across distributed devices.  

• Flask: Python-based lightweight web application framework designed to be quick and easy, with the ability to scale up to complex applications. 

Node.JS was chosen as the preferred API framework. 
The Database tools considered were:  

• MongoDB: Open source document-based database management tool that stores data in JSON formats; Highly scalable, flexible and distributed 
NoSQL database; Schema-less, no complex joins, ease of scale out, conversion/mapping of application objects to database objects not needed.  

• Couch-base: Open-source NoSQL, multi-model, document oriented DB management system that store JSON documents.  
• PostgresSQL: Object oriented relational DB with an emphasis on extensibility and standards compliance; functions and operators can be used with 

JSON and JSONB. 

MongoDB was chosen due to its Docker friendly images, ability to store JSON, capability to change streams which enables pushing updates across 
and from various service providers and STM roles. 
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Appendix C. Screenshots from the STM software prototype 

This section shows some screenshots from the execution of the software prototype, as executed end to end for the case study presented in Section 3. 
The description of the APIs and the sequence narrative is available in Section 2.3.  

1. Login and registration page for any S3, owners or operators 

2. Screening request UI for an O/O spacecraft 
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3. SSA server log showing the receipt of the S3 request 

4. CAS server initiates the screening process on proprietary software 
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5. API to return the CDMs to the S3 after screening results have been processed by the CAS 
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Appendix D. MSMA Maneuver Details for Sequential Conjunctions 

Listed below are the details of maneuvers recommended by the MSMA (assumed selected and executed) for 16+ conjunctions in the COLA case 
study of Fig. 6:  
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