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Abstract—Simulation of distributed space missions (DSMs)
for the purpose of phase-A mission design studies and general
tradespace analysis is computationally challenging owing to the
necessity of evaluating thousands of architecture options. Machine
learning and evolutionary optimization methods have enabled in-
telligent search of the architectural tradespace of DSMs, including
spacecraft and instrument design specifications. A critical com-
putational bottleneck in evaluating architectures is the ability to
rapidly simulate orbits of many DSMs with varying parameters for
global earth observation and compare their coverage-related per-
formance. When design variables include heterogeneous payload
types and characteristics, orbital characteristics, areas of interest,
and user constraints, the parameter space may be in thousands. In
this article, we describe the difficulty of coverage calculations for
narrow field of view (FOV) and conical FOV sensors, and propose
a novel algorithm, called quick search and correction (QSC), to
overcome it. We also propose new temporal evaluation metrics
to characterize the coverage performance of DSMs, as well as a
uniform random sampling technique for fast evaluation of overall
performance of DSMs. Performance of the proposed methods and
metrics are verified on an example Landsat-derived DSM, show-
ing ∼100x improvement in computational speed due to the QSC
algorithm and ∼10–250x due to the sampling technique.

Index Terms—Earth observing system, numerical simulation,
orbital mechanics, performance evaluation, remote sensing, stati-
stical analysis.

I. INTRODUCTION

THE MATURITY of the small satellites and launch access
to space over the last two decades has made distributed

space missions (DSMs) for earth observation (EO) economically
practicable [1]. This utility of and interest in DSMs, has spurred
efforts to develop open access, DSM architecture design tools to
aid mission designers in optimizing DSM designs at early stages
of project development. NASA Goddard Spaceflight Center is
leading the development of one such tool, called the Tradespace
Analysis Tool for Constellations (TAT-C) [2], [3]. The overall
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effort is to simulate candidate DSMs over their mission period,
compare their performance, and use optimization algorithms
to recommend pareto-optimal DSM architectures, within user-
specified constraints and requirements. Some example optimiz-
ers include genetic algorithm (GA) to minimize revisit time
for low Earth orbit (LEO) constellation [4], multiple-objective
GA (MOGA) to optimize over average and maximum revisit
times [5], MOGA for optimizing coverage-related metrics [6].
Reference [7] compares the performance of simulated annealing
and GA performance for the problem of discontinuous coverage.
The algorithms used are heuristic in nature and flexible to diverse
user needs and underlying nature of problem, and thus work well
for design of DSM architectures. However, convergence to opti-
mal solutions requires many (typically 1000s) candidate DSMs
(candidates are referred to as “individuals” in GA taxonomy) to
be evaluated [6]. This number grows rapidly with the increase
in design variables, and thus the search space.

Tradespace analysis of DSM architectures for EO needs a
computational module to evaluate the observational and payload
performance of each architecture. A critical component of this
module is the propagation of satellite states (position and time)
for every satellite in every DSM architecture, and computation
of coverage (events of access) of customizable ground regions
by payloads on those satellites during its mission lifetime. This
component is also the most time consuming, computationally
expensive part of the tradespace analysis owing to the large
number of options for orbital specifications, satellite numbers,
and geometry, payload characteristics, as well as large number
of discrete points on the ground regions and discrete time steps
in numerical propagation and coverage computation. Hence,
it significantly slows down heuristic search or optimization
techniques applied to DSM design in early formulation.

Rectangular narrow along-track (AT) field of view (FOV)
sensors are fairly common in EO, examples being pushbroom
imagers such as the Thermal InfraRed Sensor (TIRS) [8], [9] on
Landsat-8, Operational Land Imager [10] on Landsat-8 (30 m
along track swath), Multi-Spectral Imager for Sentinel-2 (10–
60 m along track swath); panchromatic and multispectral matrix
imagers such as WorldView-3 satellite sensor by DigitalGlobe,
Ball Global Imaging System on Quickbird (16.5 km steerable
swath) [11]; synthetic aperture radars (SARs) such as C-SAR
on Sentinel-1 (80 km nadir swath) [12], PALSAR-2 of ALOS-2
[13]. Conical FOV sensors too are popular in EO, examples
being the precipitation profiling radar on RainCube [14], and
the MicroWave Radiometers on Sentinel 3 [15]. Both nar-
row (rectangular) AT FOV and Conical FOV sensors require
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shorter time steps during coverage calculations, causing in-
creased computation time. In Section II, we outline a numerical
simulation algorithm [called as quick search and correction
(QSC)] for coverage calculations specifically geared toward
narrow AT-FOV sensors and conical sensors. In Section III,
we verify the proposed coverage calculation method for various
test cases and explore how to achieve minimal execution time
by the right selection of one of the simulation parameters.
Also, in the section, small errors (missed access events) are
analyzed.

Another critical aspect of tradespace analysis of DSMs is the
identification of suitable performance metrics, which provide
comparative utility of EO observations across DSM architec-
tures while being computationally efficient. For applications
where the primary purpose of multiple satellites is to improve
temporal resolution of the observations made over regions of
interest, metrics commonly selected are temporal in nature, e.g.,
percentage of area of interest covered (maximize) in a given
time span, and revisit time (minimize) of a region of interest.
Examples of DSMs where it was important to optimize the tem-
poral resolution of observations are the NASA-funded CYGNSS
mission [16] which has demonstrated wind speed measurements
taken from eight simultaneous vantage points in the same orbital
plane, and thereby reduction of model uncertainties and the
TROPICS constellation of microwave radiometers [17], [18],
also funded by NASA, which is looking to increase science value
of temperature/pressure profiles especially for tropical cyclones
with six spacecraft in three orbital planes.

Calculating metrics of multiple satellites in the DSM over long
mission lifetimes results in increased runtimes. In Section IV, we
introduce some coverage metrics that characterizes the revisit
performance of DSMs where value of making observations
drops off after a certain period. We also explore the usage of
a uniform, random, time sampling method for orbital propaga-
tion, and coverage calculations to estimate DSM performance
over the actual mission lifetime. Typically, numerical simula-
tions propagate orbits and compute coverage for all satellites
in the DSM, evaluated using fixed time steps over the entire
mission lifetime, and aggregate coverage metrics across every
possible observation. Instead, we hypothesize that one could
get a reasonably good estimation of the aggregated metric by
simulating a finite number of time period samples (with each
sample having a predefined duration, selected randomly over
the mission lifetime.

Finally, in Section V, we tested the proposed metrics and
method on an example (hypothetical) DSM with five satellites
hosting a single sensor identical to the TIRS on Landsat-8.
Our proposed and performance verified method lowers the
time required to compute temporal metrics of a DSM by more
than a factor of 10, and thus serves as an ideal employment
alongside heuristic optimization for rapid tradespace analysis.
The methods proposed in Section II (QSC method) and IV
(random-sampling method) maybe used independently or to-
gether for a DSM evaluation. Section VI summarizes the key
findings.

Fig. 1. Illustration of the numerically simulated footprint of a sensor with a
narrow, rectangular FOV at three consecutive, predefined time steps. The area
within the dotted lines is the actual area accessed, while the area shaded in green
is the area (made of GPs) computed as accessed during coverage calculations at
each of the three time steps. For accurate access calculations, the propagation
time step should be a fraction of expected the access duration over a GP at the
nadir, so that every GP within the dashed lines is computed correctly as being
accessed.

II. ORBIT PROPAGATION AND COVERAGE COMPUTATION FOR

NARROW FOV AND CONICAL FOV SENSORS

A. Background

Orbit propagation and coverage calculations are required to
compute expected satellite states (position and velocity) and
access events over regions or points of interest over the mission
duration. Access events (i.e., the time interval in which a payload
on a satellite accesses a point of interest) are dependent on satel-
lite states and payload FOV. Observation metrics (e.g., coverage)
can be computed from this data and characterize the performance
of any DSM, (ref. [19] describes this flow of calculations).

In this article, we consider orbital propagation as a two-body
(earth and satellite) problem taking into consideration the J2
perturbations due to nonspherical earth. This can be solved using
analytical formulation of the change in Keplerian elements of
the satellite for an input timestep [20, Ch. 6]. From the initial
conditions of the state of satellite, the propagator steps through
appropriately selected time steps, and at each time determines
if a region (represented by discretized set of uniformly set of
grid points) is under the FOV of the sensor. The orbit and
coverage (O&C) module section in [3] and [21] describes the
coverage calculation for an arbitrary closed geometrical FOV of
a sensor within the TAT-C tool, as an example. This method of
coverage calculation is hereby referred to as the “traditional”
method and we compare our proposed coverage calculation
method to this method. Running the O&C module for conical
sensors (common in sampling radiometers) and sensors with
narrow AT FOV (in pushbroom imagers) has proven to be an
extremely time-consuming operation. Figs. 1 and 2 illustrate
how selection of the numerical time step impacts the fidelity
of access (coverage) calculations for differently shaped FOV
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Fig. 2. Illustration of the numerically simulated footprint of a sensor with a
conical FOV at two consecutive, predefined time steps. The access duration by
a satellite decreases with perpendicular distance from the ground track and is
nearly zero for GPs at the dotted line (flank of the FOV). Since the minimum
access-duration in this case is nearly zero, the propagation time step may be set
to the minimum exposure time needed by the sensor to make a valid observation.

Fig. 3. Conceptual flow diagram of the numerical coverage calculations. t in
the flowchart refers to the time at which the satellite state, coverage is calculated,
while tSt is the propagator step size.

sensors. Fig. 3 explains the principle of the traditional O&C
computations.

Access information for every grid point (GP) consists of the
following fields: access event start, access event duration, and
spacecraft state (position and velocity) during the access period,
typically at the start and middle of access. For accurate access
calculations, the propagation time step should be a fraction of

the time taken to go over the ground pixel (smaller fraction is
higher fidelity but computationally more expensive). It is thus a
computational burden to simulate narrow AT FOV sensors like
the Landsat-8 TIRS pushbroom sensor where the AT FOV is 142
urad [8], [9] and at an altitude of 705 km, the time required to
go over a ground pixel at nadir is 14.8 ms. Moreover, accurately
computed access information is needed to make a fair estimate of
the observational data metrics (e.g., view zenith, view azimuth,
and bidirectional reflectance), which depend on the observation
geometry.

B. Quick Search and Correction (QSC) Algorithm

In this subsection, we outline the proposed QSC algorithm
where we divide the access calculations into a two-step calcula-
tion:

1) A “quick-search” step, where a proxy sensor with a larger
FOV is used for orbit propagation and coverage compu-
tation, as traditionally computed within TAT-C’s O&C
module for a given, fixed FOV. Since we use a large FOV,
the O&C computation takes relatively less time at this step.

2) A “correction” step, where the actual sensor FOV is used
for O&C computation over the access events recorded in
the quick-search step. Here, the propagation time step is
relatively small, but the computationally burden is reduced
due to two factors:
a) The total propagation duration for each access event is

small (typically in order of seconds). For example, in
case of 15° AT FOV proxy-sensor at 705-km altitude
used in the quick search step, the access duration at
nadir is about 26 s. This becomes the total propagation
duration for the “mission” corresponding to this access
event in the correction step.

b) Each access event recorded in the quick-search step is
for only one ground point, and hence the O&C com-
putation in the correction step needs to only examine
if that ground point is under the actual sensor FOV.

The selection of how large a proxy sensor FOV is to be used
in the quick-search step is an important tradeoff. Selecting a
too large proxy sensor FOV makes the quick-search step faster
but records a larger number of access events with larger access
durations. This in turns slows down the correction step. This
analysis is described in Section III-A.

Fig. 4 shows the QSC algorithm for access calculations for
narrow AT FOV rectangular sensors and conical sensors. It
describes the selection process for the propagation time step
tSt, in terms of the conditional comparison between a mini-
mum required propagation time step (tSt_minReq) and a pre-
defined minimum time step to be used in the quick-search step
(tSt_QSmin), and thus, the proxy sensor FOV determination. The
tSt_minReq can be determined as f∗tAT_FP, where f < 1 ( f is
user specified and is hereby referred to as the “overlap factor,”
since it dictates the extent of overlap of consecutive simulated
sensor footprints. Smaller the f, greater the overlap, and higher
is the accuracy of the access information computations) and
tAT_FP is the analytical estimated time required for the sensor
footprint to go over the ground point (at nadir). tAT_FP can be
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Fig. 4. Proposed quick search and correction (QSC) algorithm for access
calculations for small at FOV rectangular sensors and conical sensors involving
quick-search step and correction step.

estimated analytically from the earth central angle [20, Sec. 7.2].
The proxy sensor FOV is the AT FOV which gives tSt_QSmin
as the minimum required propagation time step.

The fidelity of the coverage results produced by the QSC
algorithm depends on the underlying orbit propagation model.
A higher fidelity model (for example, one accounting for atmo-
spheric drag, higher order perturbations) will improve quality of
coverage data, and therefore the output of the QSC algorithm.

III. VERIFICATION OF THE QSC ALGORITHM

The QSC algorithm is demonstrated on the coverage of
one satellite with Landsat-8 orbit specifications, carrying the
sensor specifications of Landsat-8 TIRS over a global grid of
20 000 ground points. The QSC simulation parameters used were
tSt_QSmin = 1 s, f = 0.25 for the rectangular FOV (15° × 142
urad). A mission duration of 0.1 days (2.4 h) required 2853.30 s
of simulation runtime when O&C was implemented traditionally

with a propagation time step of 0.0037 s, as calculated from 142
urad AT FOV of TIRS. Instead, the QSC algorithm took 29.25 s
for the quick-search step, 2.73 s for the correction step, and
thus a total of about 32 s of runtime. The results of the QSC
algorithm matched with the results from the traditional O&C
implementation. The quick-search step was implemented with
a proxy sensor AT FOV 2.1960°, considering tSt_QSmin = 1 s.
To summarize for this example, the QSC took ∼one-hundredth
the execution time compared to a direct approach.

Several representative use cases of different sensors in differ-
ent orbits over different durations were simulated to compare
results from the QSC vs. the traditional method of O&C, over
2000 global GPs. Table I lists detailed parameters and execution
times of the simulations. In order to succinctly show that the
results from the QSC and traditional method match, the follow-
ing metrics are compared in Table I: calculated number of access
events and mean and variance of the calculated access durations.
The use cases also verified that the access events from the QSC
and the traditional method correspond to the same GPs and at
the same time horizons (not shown in the table). Runtime is
improved by several orders of magnitude at negligible difference
of the results against the traditional method across all the metrics.
As expected, the QSC algorithm causes greater improvement in
computational speed over the traditional method, for smaller
sensors. While the correction step in the presented cases takes
<1 s, Section III-A discusses how the overall execution time
may be further minimized by selection of optimal tSt_QSmin
parameter (and hence proxy sensor FOV for the quick-search
step).

The small differences observed in the results of the traditional
and the QSC method will be discussed below. The machine
used for all simulations in this article was a Virtual Machine
with allotted 8-GB RAM running on Intel Core i9-8950HK
CPU@2.90 GHz, 32-GB RAM.

A. Performance Sensitivity to QSC Parameters

The tSt_QSmin parameter dictates the size of the AT FOV
of the proxy sensor. While a larger tSt_QSmin implies larger
propagation step size in the quick-search step which would
reduce execution time of the quick-search step, it also forces
a larger proxy sensor FOV, which covers a larger number of GPs
at each propagation step (see Fig. 3). Since larger number of GPs
need to be processed, this increases execution time. Fig. 5 plots
the execution time of the quick search, correction steps, total
execution time, and the AT FOV used in the quick-search step for
different values of the user-defined parameter tSt_QSmin. In all
cases, the orbit simulated was a 500-km SSO over a simulation
period of 15 days, and the sensor considered was a rectangular
FOV sensor with cross-track FOV of 45°. The QSC simulation
parameter f (overlap factor) was set to 0.25. The tSt_QSmin
parameter determines the value of the proxy-sensor FOV. While
a larger tSt_QSmin implies larger propagation step size and
lower execution time of the quick-search step, the larger proxy
sensor FOV also captures a larger number of GPs, hence more
processing at each propagation step and increasing execution
time (see Fig. 3). In all the subfigures of Fig. 5, we see that the
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TABLE I
EXAMPLE CASES TO VERIFY AND COMPARE THE TRADITIONAL AND QSC METHOD OF COVERAGE COMPUTATIONS

In all the listed cases a uniform grid of 2000 points over the entire Earth is considered. The QSC simulation parameters were: tST_QSmin =

1 s, f = 0.25 for rectangular FOV, and f = 0.1 for Conical FOV. The average and standard deviation are calculated over all the recorded access
events of the simulation run. The performance metric column headers are bolded. The row titled “correction” under QSC lists the performance
metrics of the quick step and correction to compared to the Traditional row. However, it lists the execution time of only the correction step to
allow readers to understand the time budget.

execution time of the quick-search step decreases rapidly with
initial increases of tSt_QSmin, but gradually flattens out, due to
the varying degree of conflict between the two factors described
above, at different regimes of tSt_QSmin. On the other hand,
execution time of the correction step has an increasing linear
trend (with small local deviations that are explained below in
Section III-B). This is because as the tSt_QSmin increases, the
proxy-sensor FOV increases, and the number of accesses and the
access duration of each of the access events by the proxy-sensor
increases. Thus, a relatively larger number of access events needs
to be processed in the correction stage. The minimum total
execution time is the region where the execution times of the
quick-search step and correction steps are similar.

In subgraphs (a) and (b), the number of GPs considered in
coverage calculations is varied (10 and 5K, respectively) for the
same sensor rectangular FOV of 1 × 45°, to show the effect
of greater number of GPs at each propagation step. The same
behavior is expected by varying of the altitude of the orbit or the
cross-track FOV of the sensor (larger altitude/cross-track FOV
implies more GPs captured at each propagation step). Subgraph
Fig. 5(b), as expected, has shorter execution times since it corre-
sponds to smaller number of GPs. The position of the minimum
execution time is roughly the same in both cases (tSt_QSmin
= 16∼17 s) suggesting that increased number of GPs affects
(increases) the execution times of both the quick-search step
and correction step to the same degree.

Comparing subgraphs (b) and (c), show the effect of the
AT FOV of the sensor, 1° and 0.1°, respectively. The rate of
increase of the correction step execution time is more for 0.1°

case because the correction step has a smaller propagation step
size (tSt), due to the smaller associated AT FOV. The minimum
execution time in this case is for tSt_QSmin = 5 s and can be
said to be sensitive to AT FOV of the (actual) sensor.

An optimal (in terms of minimizing the overall execution
time) tSt_QSmin may be chosen by the user by conducting
an analysis as described above. Such analysis can be for a
short mission duration, such as a few days, just to determine
the optimal tSt_QSmin, which can then be used for calculating
coverage over the entire mission duration.

B. Error Analysis

Minor differences in coverage performance were seen in the
QSC results compared to results using the traditional method.
The calculated access duration and the access event start date
by the QSC method can deviate upto the calculated mini-
mum required propagation step size used in the correction-step
(+/−tSt_minreq). This error can be seen in Table I, where the
average and the standard deviation of the access durations of the
traditional method and the QSC method are slightly different,
since the resolution of the orbit propagation is tSt_minreq. The
user can control this parameter by specifying a different value
of the overlap factor f. A lower overlap factor f corresponds to
smaller propagation step size used in the correction step of the
QSC algorithm and hence enhanced time resolution. Limited
time resolution may also cause access events to be captured in
one method (QSC or the traditional) but not in the other method.
These events correspond to those with access durations lesser



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 5. Sensitivity of the execution time to the tSt_QSmin parameter for a
fixed factor f = 0.25. In all cases, the orbit simulated was a 500-km SSO with
a rectangular FOV sensor of 45° cross-track FOV, over a period of 15 days.
Comparing (a) and (b), varies grid point number. Comparing (b) and (c), varies
the along-track FOV of the sensor. The tST_QSmin corresponding to minimum
total execution time is seen to be most sensitive to the along-track FOV of the
sensor. (a) FOV: 45 × 1°, 10 K grid points globally. (b) FOV: 45 × 1°, 5 K grid
points globally. (c) FOV: 45 × 0.1°, 5 K grid points globally.

than one tSt_minreq. Capturing of such events is dependent on
the epoch at which the numerical orbit propagation started, and
not based on the method used.

In some cases of Table I, the number of accesses (see “cor-
rection” row) is slightly different as calculated by the calculated
by the QSC vs. traditional method. While some of the disparity
corresponds to access events with duration less than the time
resolution of orbit propagation, there are missing access events
(in the QSC method) with duration longer than the propagation
time step. Further, Fig. 5(c) shows small visible deviations (at the

Fig. 6. Exaggerated illustration of coverage error due to use of large propa-
gation step sizes. An orbit at 90° inclination is shown, with the satellite moving
from bottom to top of the page. In the coverage calculations, the sensor is aligned
in a Nadir-pointing frame, with the y-axis along the negative orbit normal,
defined by the satellite position vector and the satellite velocity vector in inertial
frame. Due to Earth’s rotation, there are regions which the numerical simulated
sensor footprints do not cover, even though they may have a reasonably large
longitudinal overlap.

larger proxy sensor FOV regime) from an otherwise monotonic
increase in correction step execution times. An increasing proxy
sensor FOV implies a greater number of access events collected
during the quick-search step to be processed in the correction
step. However, the number of access events (of access durations
larger than the minimum propagation step size) calculated by
the correction step decreases with increasing proxy sensor FOV
used in the quick-search step, leading to dips in the otherwise
monotonic increase.

We hypothesize that the decrease number of access events,
is due to discretization errors in the coverage area calculations
resulting from the use of a fixed step size by the numerical orbit
propagator. In the quick-search step, larger the proxy sensor AT
FOV, bigger is the corresponding propagation time step used.
While this serves to decrease the execution time, it introduces
discretization errors as illustrated in Fig. 6. The coverage is
typically calculated with the sensor aligned to the nadir-pointing
frame, and we assume one of the sensor axes to be aligned to the
orbit normal, which is derived from the satellite velocity vector
in inertial frame. There is a nonzero angle between the ground
track and the satellite velocity vector in inertial frame due to the
rotation of the earth, which manifests into missed access events
(missed GPs).

We test this hypothesis in two ways as follows:
1) Evaluate the errors (difference in number of accesses

compared to the traditional method) for orbits of different
inclinations and different proxy sensor FOVs used in
quick-search step [see Fig. 7(a)]. The error is zero for
equatorial orbits, which is consistent with our hypothesis,
because the satellite velocity vector in inertial frame is
aligned with the ground track in an equatorial orbit (the
satellite revolves around the same axis as the earths rota-
tional axis). Moreover, the errors for nonzero inclination
orbits increase with the increase in the proxy sensor FOV
used in the quick-search step.

2) Decrease the QSC overlap factor f to 0.20 (and have
corresponding changes in the tST_QSmin to maintain the
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Fig. 7. Percentage of missing access events recorded by the QSC method
(baselined to the number of access events calculated by the traditional method)
for cases of f = 0.25 and f = 0.20. The satellite orbit simulated was 500-km
SSO with 20 × 2° rectangular FOV sensor, with 8000 global grid points. The
error increases with increase in the proxy-sensor FOV used in the quick-search
step and decreases with larger overlap between the sensor footprints [Case (b)].
It is zero for the case of equatorial orbits. (a) Case: f = 0.25, tSt_QSmin = 1x.
(b) Case: f = 0.20, tSt_QSmin = 0.8x.

same set of proxy sensor FOVs) and reevaluate the errors
[compare Fig. 7(a) and (b)]. With decreasing f and thus
increasing sensor footprint overlap for the given set of
proxy sensor FOVs, the propagation time steps used in the
quick-search steps is smaller and should result in smaller
discretization error to be consistent with our hypothesis.
There is indeed an observed decrease in the error relative
to the case of Fig. 7(a), where f = 0.25 was used.

The maximum disparity of recorded events is ∼1%. Their
occurrence depends on the density of the grid, the placement
of the grid relative to the orbit path, the satellite state at which
the simulation is started, orbit inclination, and sensor alignment
for coverage calculations (e.g., some coverage calculations may
be done with frames constructed using satellite ground-velocity
vector, geodetic frames, etc.).

IV. PROPOSED METRICS AND RANDOM SAMPLING FOR

RAPID DSM EVALUATION

One of the key advantages that DSMs have over single
satellites is a better temporal resolution of observations made
over regions [1]. Ref. [20, Sec. 7.2.3] describes standard figures

of merit for coverage, to quantify the temporal resolution of
observations possible by DSMs. Much of the objectives used
in DSM optimization are revisit time or coverage gaps [4]–[7].
These metrics are often averaged to give a “mean” quantity over
several events recorded over the entire mission duration of the
DSM (e.g., mean coverage gap). Further, since these averaged
metrics are computed for each ground point, they may be further
aggregated over several ground points in a region.

This section proposes an updated coverage metric (useful
revisit time) for quantifying a DSM’s temporal characteristics,
and briefly outlines some instantaneous observation metrics
important to earth science products. The section also describes
a novel sampling method for rapid computation of metrics over
space and time. The example simulations in Section V show
the applicability and computational efficiency of the proposed
sampling method on the proposed metrics.

A. Useful Revisit Time

For DSMs in the LEO, continuous coverage globally is
not possible without a large number of satellites in the DSM
(e.g., Iridium commercial constellation of 66 communication
satellites). The quantification of “revisit” of any global point
therefore becomes important for DSMs which cannot afford
a large number of satellites. Our proposition of a new metric
called “useful revisit time” is motivated by effectively quan-
tifying only those revisits who observational data is useful to
the user, especially in applications of rapid response (e.g., wild
fires), events or phenomena being of finite time duration (e.g.,
transient precipitation and flash floods), low latency satellite data
supplementing slower ground based instruments (e.g., aircraft
or ship tracking). In such applications, a DSM with revisit rate
longer than the phenomena duration or data expiry does not serve
any use.

A useful-revisit event is defined as an event when a DSM
revisits and can make a successful observation of a region within
a user-specified maximum useful revisit period. For example, for
an application involving urban floods due to heavy precipitation
on small streams in the Atlanta area, the user may specify the
maximum useful revisit period as 1 day. Thus, events over the
region of interest with revisit <1 day qualify as a useful revisit
event, and the period of the revisit (also called the coverage gap)
is the useful revisit period. This framework also allows us to de-
fine a “useful visit” (what qualifies as a successful observation?)
by setting a threshold level on the expected instantaneous data
metrics, some of which are defined in Section IV-B. For example,
we may define a minimum signal-to-noise ratio (SNR) of an
image taken by an optical sensor, such that visit of the satellite
at local dawn, dusk or night would not qualify as a useful visit
result. By setting the maximum useful revisit period to the entire
mission simulation period and clearing all the thresholds on data
metrics will make useful revisits equivalent to the traditionally
calculated revisit period.

This event can be quantified by the following aggregating
metrics.

1) Aggregate Value of Useful Revisit Periods: This metric
aggregates the coverage gaps between useful revisit events. The
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Fig. 8. Comparison of the occurrence of observation events by a hypothet-
ical ideal DSM, defined by a user-derived minimum number of observations,
against an example DSM whose performance is being quantified. Performance
is evaluated not only by number of observations, but also its spread.

statistical aggregator can be the median, a percentile (e.g., 90%-
ile or upper quartile), or a standard mean period over all the
useful revisit events during the mission, represented as

x̄ =
N∑

i=1

xi/N (1)

where
x̄ is the mean of the usefu revisit periods;
xi is the period of the ith useful revisit;
N is the total number of useful revisits.

2) Normalized Number of Useful Revisit Events: We define
a baseline hypothetical DSM which has the following number of
useful revisits, equally spread over mission life. This represents
the minimum number of observations that a DSM would need
to make to meet the user’s useful revisit criteria.

M = D/xmax (2)

where
M is the number of useful revisits of any region or point

of interest by the hypothetical DSM;
D is the total mission duration;
xmax is the user specified maximum useful revisit period.

The normalized number of useful revisits is defined as

r = N/M (3)

where
N is the number of useful revisits of any region or point of

interest by the DSM whose performance is being quantified.
While it is trivial to see that 0 ≤ r < ∞, r > 1 does not

necessarily meet the revisit requirements of the user because
the spread of observations is as important as the number. Fig. 8
illustrates a situation where a DSM has r > 1, but since some
revisits clustered around a certain period (which may occur in
a DSM with “string-of-pearls” architecture), others are further
apart than xmax, thus useful revisit is not met for all times of the
mission.

Ref. [18] introduces a similar aggregate metric called Con-
tinuous High Revisit Coverage which is the percentage of time
where a GP is either in an access, or in a gap shorter than a
threshold gap duration. The normalized number of useful revisits
metric, on the other hand, considers the number of imaging
opportunities, and not the time available for any opportunity.
The access duration for a GP (which limits the observation time,
or exposure time available to the sensor) can be reported as an
instantaneous observation metric in our proposed framework.

3) Variance of Useful Revisit Periods: Ideally, a mission
designer may like the revisits by the DSM to be spread uniformly
over the entire mission duration. The uniform distribution of
revisits in the hypothetical baseline DSM is motivated by this
ideal. The variance of the revisit period for the ideal DSM is
zero. We can get a sense of the distribution of the revisits, for
any DSM being evaluated, by calculating the variance of the
useful revisit period as follows:

v =
N∑

i=i

(xi − x̄)2/ N . (4)

If a user wants to avoid clustered useful revisits, DSMs with
lower variance of the useful revisit period may be selected.

B. Instantaneous Observation Metrics

While coverage and revisit quantify the overall temporal
performance of a DSM, instantaneous metrics are very useful
for evaluating sensor specific performance as time series. For
tradespace analysis purposes, we propose two standard obser-
vation metrics: SNR ratio and the Noise-Equivalent Delta Tem-
perature (NEDT) for radiometric performance determination in
optical/near-optical sensors. Metric such as the noise-equivalent
sigma zero can be used for quantifying the radiometric perfor-
mance of SARs. Irrespective of the payload sensor, observation
geometry of the satellite and Sun with respect to the observed
ground point are instantaneous parameters that serve as critical
inputs to the above metrics. Observational geometry parameters
[22] are not just important for standard metrics like SNR, but
also for more specific data product driven metrics that are
dependent on the spectral characteristics and type of sensor,
e.g., bidirectional reflectance distribution functions (BRDF),
leaf area index (LAI), normalized difference vegetation index
(NDVI). The ability to rapidly compute observation geometry
time series enables dependent data products to be computed, and
DSM trades can be analyzed based on higher fidelity, science
product objectives.

In Section V, where we have conducted a simulation case
study, we use the following instantaneous observation metrics:
range, observation-zenith angle, SNR, and NEDT. A brief de-
scription of the evaluation of these standard metrics is as follows.
Range is defined as the distance from the satellite to the target
ground point at the middle of any observation period. The
observation-zenith angle is defined as the angle between the vec-
tor from satellite to ground point and the nadir vector. The SNR is
calculated from the framework of passive-optical-sensors given
in [20, Chap. 9]. The framework is described briefly here: earth
is modeled as a blackbody radiator at a temperature of 290 K,
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while the sun is modeled with temperature 6000 K. The angle
of the sun to the local frame at the pixel (centered at the ground
point of dimensions equal to the spatial resolutions in the AT,
cross-track directions) and angle to the satellite is calculated
from the computed access data. Radiance at the sensor aperture
is taken as the sum of the radiance radiated from the earth and
radiance of sun reflected of earth integrated over the imaging
band. A unity surface albedo is assumed. Integration time at the
sensor aperture is set to be the minimum of the sensor hardware
specification or the access duration. Efficiency of the optical
transmission system and detector efficiency of converting the
incident photons to circuit electrons is considered and the final
signal electrons at the sensor electronics is estimated. Shot noise
model is considered to calculate the number of noise electrons,
and finally the ratio of the signal electrons to the noise electrons
is presented as the SNR of any observation. The NEDT metric
(used for thermal sensors such as Landsat-8’s TIRS) is calculated
as the ratio of number of noise electrons to the change in number
of signal electrons for 1K raise in scene temperature. A lower
NEDT corresponds to a higher quality observation. Depending
on the user application, process-driven computation for BRDF,
LAI, NDVI, or any other observation metric can be implemented
similarly.

C. Uniform Random Sampling for Rapid DSM Evaluation

The traditional way of quantifying a DSM’s performance
has been to numerically simulate orbits of all the satellites in
each DSM architecture, compute all the access events, com-
pute coverage and instantaneous observation metrics from the
access data per ground point (GP)—hereon referred to as the
level-0 metrics. After that, level-0 metrics of all the events at
any ground point are aggregated over time using a statistical
measure like mean, median, or variance—hereon referred to as
level-1 metrics. These level-1 metrics at each GP can again
be aggregated over all GPs to get a performance metric for
a region or globe—hereon referred to as level-2 metrics. The
evaluated level-2 metrics of any DSM can be compared with
that of other DSMs to determine tradeoffs in performance, as
compared to tradeoffs in other evaluation criteria such as cost
and risk. Note that the above introduced level-0/1/2 metrics
are not to be confused with the level-1/2/3 terms used in tax-
onomy of remote-sensing data products at different stages of
their processing pipeline. Our proposed level-0 simply indicates
spatio-temporally varying metrics, which when aggregated over
time produces level-1 metrics, and when further aggregated over
space produces level-2 metrics.

In this article, we explore the possibility of quantifying the
performance of a DSM by conducting numerical simulations
of the O&C at randomly chosen small intervals within the
mission duration, instead of over the entire mission duration.
The randomly chosen small-intervals are hereon referred to as
“samples” and the duration of each of these temporal samples
are referred to as the “sample duration”. During each sample
computation, we compute one or several level-0 measures of the
coverage, data metrics over all the GPs representing the region
of interest. We hypothesize that a small number of samples is
sufficient to determine the level-1 mean metric at a GP, rather

than computing the mean over all the observations at that GP
during the entire mission period. We can thereby estimate the
performance of a DSM by making the O&C calculations for a
fraction of the mission duration. A uniform random sampling
method is chosen so that we can capture the potential changes
in the level-0 metrics at different periods of the mission. The
nature of orbital dynamics involves several periodic phenomena
such as the orbit of satellite, rotation of Earth, etc. and a random
sampling strategy is required to avoid bias.

There are two parameters to be decided upon for the random
sampling strategy.

1) Sample Duration: The sample duration should be such
that all the level-0 metrics are measurable within the duration.
Increasing the sample duration guarantees sufficiency, but at
the cost of increased computational load. Therefore, a threshold
maximum level must be decided depending on the metrics of
interest to the user in a given application, i.e., maximum across
all requirements. Level-0 coverage metrics are likely to require
the largest sample duration, since the revisit time/coverage gap
is expected to be large. If the application is interested in a level-0
metric such as useful revisit period, the sample duration can be
set to the user specified maximum useful revisit period (xmax).
Instantaneous metrics typically require smaller sample duration.
For example, if the expected access duration is 25 s, the sample
duration must be greater than 25 s so that the level-0 observation
metrics can be computed at-least once during the sample.

2) Number of Samples: Increasing the number of samples
randomly selected from the mission duration increases the com-
putation load. On the other hand, selecting too small number of
samples can lead to collection of less than adequate number of
level-0 metrics at a GP, and hence wrong estimation of the level-1
metric. Therefore, a threshold level must be decided. Note that
the number of samples is not necessarily the same as number of
level-0 metrics collected at a GP. It may happen that during one
sample run, multiple, or zero number of measures of the level-0
metric are made at a GP.

V. VERIFICATION OF THE RANDOM SAMPLING METHOD

We apply our proposed sampling method with our proposed
metrics to the simulated spacecraft and sensor described in
Section III’s first paragraph, to demonstrate comparable fidelity
of results at orders of magnitude better computational efficiency.
While in our example the QSC algorithm is applied for O&C
calculations, the random sampling method can also be applied
with any other coverage calculation method. The example DSM
simulated in this section comprises of five satellites in a uniform
Walker constellation [20, Sec. 7.6] with the specifications of the
Landsat-8 TIRS pushbroom sensor. One of the satellites in the
DSM is simulated to be in the same orbit as Landsat-8. The
mission duration is assumed at 180 days and the user-specified
useful revisit period is 7.5 h. The DSM performance metrics
computed in this example are range, observation-zenith angle,
SNR and useful revisits.

A. Baseline Simulation for the Control Experiment

The example DSM was simulated, and metrics computed
in the traditional manner over the entire mission duration of
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Fig. 9. Frequency plots showing some level-0 metrics at GP (40.00° N,
98.01° W): observation range, observation-zenith angle and revisit period com-
puted for the example five satellite Walker DSM with the Landsat-8 TIRS sensor,
over 180 days of mission duration (baseline simulation without subsampling the
time horizon described in Section V.A). In (c), all the revisit periods are shown.

180 days, to represent the baseline dataset. Fig. 9 shows the fre-
quency plots of level-0 metrics range, observation-zenith angle,
and revisit period. All the revisits are shown in the plot, including
those longer than the useful revisit duration. The key aspect to
note is that all frequency distributions have finite variance, and
from the Central Limit Theorem, we can obtain a measure of the
error expected when we calculate the level-1 mean metrics by
taking uniform random samples from these distributions. The
standard error (sE) associated with taking k samples from a

TABLE II
sE FOR LEVEL-0 METRICS FOR VARIOUS NUMBER OF SAMPLES AT GRID

POINT (40.00° N, 98.01° W)

population with variance σ2 is given by [23]

sE = σ2/
√
k. (5)

Table II lists the standard error sE expected for the level-0
metrics, as calculated from the numerical variance of the full
data set of distributions, as a function of different number of
temporal samples drawn. All distributions are obtained at GP
40.00° N, 98.01° W and all samples are 10 orbital periods long.

B. Uniform Random Sampling Method

The uniform random sampling method described in the pre-
vious section is applied to the example case of the five satellite
Walker DSM with Landsat-8 TIRS sensor. The sample duration
is chosen as 10 orbital periods ∼16.5 h. This is twice greater
than the user-specified maximum useful revisit of 7.5 h, and
hence capable of potentially capturing two revisits within the
sample. A threshold NEDT = 0.4 K (corresponding to the TIRS
requirements [8]) is defined as the maximum NEDT for an
observation to be deemed useful during a visit.

Fig. 10 shows the computed level-1 metrics: mean of ob-
servation range, mean of observation-zenith angle, and mean
of useful revisits for different number of samples and at 10
randomly chosen GPs within the global grid set (20 000 points).
As the sample size SN increases, the estimated level-1 metrics
for any GP gets closer to the level-1 metric, as evaluated from the
complete simulation dataset (control experiment). The variance
(Section IV.A-4) of the useful revisit periods is nearly 0 for all
cases due to the uniform nature of the chosen example DSM.

The aggregated error of a level-1 metric is defined as

P∑

i=1

∣∣∣∣ml1,i −mB
l1,i

∣∣∣∣/P (6)

where
ml1,i is a level-1 metric (e.g., mean observation range) at GP

i, calculated using the proposed sampling method;
mB

l1,i is the level-1 metric at GP i, calculated from the baseline
simulation, serving as the control experiment;

P is the total number of GPs observed using the corre-
sponding uniform random sampling method. Note that
the error calculation in (5) does not consider GPs which
are not observed by the random sampling technique, al-
though they may have been observed sometime during
the mission.
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Fig. 10. Level-1 metrics of the five satellite Walker DSM with Landsat-8 TIRS
at ten randomly chosen GPs, among the 20 000 GPs populating the globe. SN is
the number of temporal samples used for the random uniform sampling strategy.
The level-1 metrics calculated the complete simulation of the DSM is plotted as
circles to provide a baseline dataset to validate the random sampling strategy.
Higher number of samples increases the accuracy of the evaluated level-1 metric
as expected. Too few samples (such as SN = 5) may lead to missing metrics at
some GPs.

Fig. 11 shows these error terms in absolute units for four
metrics (normalized number of useful revisit events, range,
observation zenith angle, useful revisit period), as aggregated
over all the GPs over the globe, for the uniform random sampling
method as a function of sample sizes. Increasing the sample size
reduces the aggregate error in all metrics, albeit nonlinearly and
to differing extents. The errors are calculated using the evaluated
metric value of the baseline simulation as the reference.

The complete, baseline simulation of 180 mission days took
a runtime of 28 h for the O&C employing the QSC algorithm
to complete on the previously described computer and OS

Fig. 11. Aggregated level-1 metric errors over all 20 000 GPs as a function
of the number of temporal samples in the uniform random sampling technique,
as baselined against metrics calculated from the complete numerical simulation
dataset. There are four different y-axes for the four plot lines, as matched by the
color of the axis label, tick marks, and plot line.

Fig. 12. Percentage SNR error, percentage useful revisit period error versus
percentage of the simulation time (referenced to the baseline, complete sim).
The % SNR error is observed to be low even in case of SN = 1 because the
variation of range and observation-zenith angle across all observations made by
the DSM (Fig. 9) is small. The useful revisit error is comparatively higher.

(Sections II and III). The random sampling technique success-
fully reduced computational load in inverse proportion to the
number of samples. The total simulation length is the product
of the number of samples and sample duration, therefore re-
ducing either term reduces the runtime proportionately. In the
verification case, the reduction in simulation time is a factor
of 262, 52, 26, and 13 for randomly picked sample size of
SN = 1, 5, 10, 20 cases, respectively. If runtime is assumed to
be proportionate to simulation time, the expected, sequential
runtime (for the O&C employing the QSC algorithm) for the four
#samples buckets in Fig. 11 are 6.4, 32.3, 64.6, and 129.2 min,
respectively, while the actual runtimes recorded were: 6.7, 32.7,
66.5, and 143.1 min, respectively (running on machine with
specifications as listed in Section II).

The accuracy of results from the proposed methods is sensitive
to the metrics. Fig. 12 shows the relative SNR error and relative
useful revisit period error (baselined against the metric values
computed in the complete simulation) vs. the simulation time
required, as a percentage of the time taken by the complete
simulation. The percentage SNR error is low even in the case
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of SN = 1, owing to the small variance in range at any given
ground point [see Fig. 9(a)]. SNR primarily varies with range,
and thus the variance in SNR too is low. The small variance in
range is further attributed to the relatively small off-nadir (+/−
7.5° cross-track FOV [8], [9]) allowed for imaging. The trend
in both Figs. 11 and 12 shows decreasing error with increased
sample size (and therefore, simulation time) as expected.

C. Practicable Implementation of the Proposed Method

The proposed random sampling method was demonstrated for
the case of DSM with five satellites in uniform Walker constel-
lation. DSMs can vary significantly in time-varying topology
and therefore metrics as a function of their type (constellations,
formations, etc.), number of satellites, orbits, geometry, etc. The
random sampling method has not been verified for all possi-
ble use cases. We anticipate the following issues (and suggest
workarounds) which may arise during practical implementation
of the method:

1) Selection of Number of Samples SN: During any sample
simulation, only a subset of all GPs of interest maybe “seen”
by any satellite in the DSM. It is difficult to predict when a GP
will be accessible in a sample. In an extreme case, there may be
some GPs in the user’s region of interest that are never “seen”
by the DSM. To circumvent this unpredictability, we propose
an algorithm that adaptively sets the number of samples. First,
it can process an initial fixed number of samples (say SN0), and
later, it forms a set of all the GPs seen at least once during the
SN0 sample collection. The algorithm iteratively continues to
sample until the required number of metrics per GP and over all
of the GPs is acquired.

2) Orbit Propagator: In our presented demonstration, we
considered a simple orbit-propagation model with perturbations
due to J2 effect on the argument of perigee and right ascension of
ascending node [20, Sec. 6.2.2]. Both these perturbations remain
constant throughout the mission; the altitude, inclination, and
eccentricity do not perturb. This allows for propagator to make
large “time-jumps” between periods of propagation without any
propagation errors. This may not be true for a more sophisticated
propagation model and errors due to large time-jumps may need
to be considered. On other hand, if the satellites in DSM are
equipped with station keeping abilities, we can assume that
the orbits are corrected frequently, and it may be reasonable
to propagate with a simple model due to near equivalence of
results.

3) Parallel Processing: The simulation of the example 5
satellite DSM took 2.15 h using uniform sampling technique
with SN = 20. This can be reduced further by means of pro-
cessing all (or part of the) 20 samples in parallel. Of course,
the same maybe applied to the case of complete simulation, i.e.,
dividing the entire mission period into contiguous chunks of say
10 orbits duration each and propagating these chunks in parallel.
Nevertheless, the number of parallel threads required for the
complete simulation case far outnumbers that in the uniform
random sampling case, and hence is relatively inefficient.

VI. CONCLUSION

The time-consuming propagation of orbits and performance
quantification of DSM architectures has been a longstanding
problem to apply heuristic optimization on DSM design and
tradespace analysis. In this article, we propose and demonstrate
two methods, the QSC algorithm and the random sampling
method (with associated metrics of useful revisit events) which
can be used to either independently or together in DSM evalua-
tions. The fidelity of the results of the QSC algorithm depends
on the underlying orbit-propagation model chosen by the user.
The random sampling method on other hand approximates ag-
gregated performance characteristics (level 1 or level 2 metrics)
of the DSM by sampling the metrics (level 0) over the mission
lifetime.

The QSC algorithm was demonstrated to accurately process
narrow AT-FOV and conical FOV sensors, using the Landsat-8
TIRS pushbroom sensor as an example. Runtimes are shown
to be two orders of magnitude faster than the traditional O&C
calculations. We present results from use cases comparing the
traditional O&C and the QSC method. The sensitivity of the
execution time to the selection of the minimum propagation
step-size (and hence the proxy-sensor FOV) to be used in the
quick-search step was also studied. The QSC algorithm may
be improved by considering a more general N-step search and
correction process. While the QSC demonstrated in this article
has just one “search” step, it may be replaced with N-search
steps, and further optimize the execution time for coverage
calculations.

Novel metrics for useful revisit events, such as mean/variance
of useful revisit period and normalized number of useful revisits,
instead of the traditional aggregation of all revisits, when quanti-
fying the overall temporal response of a DSM, was proposed. We
demonstrated the uniform random sampling method for quanti-
fying DSM performance over mission lifetime for an example
simulation of five satellite Walker DSM with Landsat-8 TIRS
sensors. Simulation times and run times were shown to decrease
by a factor of 13 upon using the random sampling technique
with 20 samples (each of whose durations was 10 orbits), as
compared to a baseline case when the DSM was simulated over
the entire mission period of 180 days. This improvement is over
and above that shown by the QSC algorithm.
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