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ABSTRACT 

 

Gross primary productivity is an excellent metric of how 

much forests act as carbon dioxide sinks but currently have 

up to 40% uncertainty in their global estimates. A large 

proportion of the uncertainty has been attributed to artifacts 

in the sun-sensor geometry of monolithic spacecrafts 

leading to insufficient sampling of the bi-directional 

reflectance of vegetation. This paper proposes to use small 

satellite clusters with spectrometers as a new measurement 

solution to improve angular sampling locally and scale up 

measurements globally. Initial observing system simulations 

with four satellites launched as secondary payloads via the 

ISS and operating in different imaging modes show error 

estimates of less than 12% when compared to dense 

airborne measurements, a 50% improvement to the worst 

case error produced by corresponding monoliths. 

 

Index Terms— BRDF, satellites, constellation, PRI 

 
1. INTRODUCTION TO THE SCIENCE PROBLEM 

 

Quantifying the extent to which forests and vegetation act as 

a sink for atmospheric carbon dioxide is very important to 

estimate carbon feedbacks of vegetation in response to 

global climate change [1]. Deforestation and forest 

degradation accounts for 12% of anthropogenic carbon 

emissions, which have nearly doubled in the past 30 

years[2]. Current Gross Primary Productivity (GPP) 

estimates show uncertainties up to 40% in the terrestrial 

carbon uptake [3].  GPP is the product of photosynthetic 

efficiency (ε) and photosynthetically active radiation 

(APAR) absorbed by the plant. In recent studies, we have 

shown that measurements of vegetation reflectance at 

multiple angles can be used to estimate changes in 

protective leaf pigments as a function of shadow fraction 

[4]. These protective leaf pigments (xanthophylls), regulate 

light use efficiency in leaves and can be measured by means 

of the Photosynthetic Reflectance Index (PRI), a normalized 

difference index that is sensitive to the xanthophyll 

absorption at 531nm. Photosynthetic efficiency is the 

differential of PRI with respect to the shadow fraction 

[4],[5]. This differential can be estimated from the bi-

directional reflectance function (BRDF) of PRI. BRDF 

describes the directional and spectral variation of reflectance 

of an optically thick surface element at any instant of time; 

it is a function of the material surface properties and 

roughness [7].  

 

Measurement of the BRDF of PRI is inaccurate using 

existing space-borne sensors. Existing imaging 

spectrometers such as MODIS or MISR in sun-synchronous 

orbits, provide insufficient angular coverage during a single 

overpass. Recent studies have also shown an overestimation 

of the greening of Amazon forests during the dry season due 

to seasonal artifacts in MODIS’ sun-sensor geometry[8]. 

Global and frequent BRDF is impractical to estimate using 

towers and airborne instruments. Therefore, small satellite 

clusters on repeat track orbits with VNIR spectrometers 

have been proposed for the purpose [9]–[11]. Usage of 

angular reflectance data from the CHRIS instrument on the 

PROBA spacecraft has shown to bring GPP estimation 

errors down to 10% [3], however PROBA is not designed to 

measure GPP and does not provide the temporal resolution 

and global coverage required to do so. One possible solution 

would be to use constellations of CubeSats to obtain 

measurements of GPP with a frequent temporal repeat and 

global coverage [5],[9],[10].  

 
2. CLUSTER EVALUATION METHODOLOGY 

 

This paper proposes a new measurement solution to make 

multi-angular reflectance measurements using small 

satellites in close formations called clusters.  It uses an 

observing system simulation experiment (OSSE) to 

demonstrate the potential improvement in GPP estimation 

using the new solution and design the most optimal cluster 

architecture. An architecture is defined here as a unique 

combination of orbits for the satellites in the cluster. Data 

from airborne campaigns of the Cloud Absorption 



Radiometer (CAR) instrument is used as “truth” data [14]. 

The CAR is designed to scan from 5° before zenith to 5° 

past nadir, corresponding to a total scan range of 190°. Its 

14 bands are located between 335 and 2344 nm. By flying 

the CAR (on platforms such as NASA P-3B) around a 

particular ground spot in circles and at different heights, it is 

possible to get thousands of multi-angular and multi-spectral 

radiance measurements used for the accurate estimation of 

BRDF [14] [15].  

 

OSSE simulations for different cluster architectures output 

viewing geometries for different geographic locations over a 

period of time and the true data is locally sampled based on 

these views. BRDF models are then used to reconstruct 

reflectance at all angles – measurement zenith and azimuth 

for a given solar zenith - from the data sample. The error 

between the BRDF estimated using the reconstructed 

reflectance versus the true data, and the corresponding error 

in PRI, quantifies the goodness of the angular viewing 

geometries. The goal of this paper is to show that with a few 

satellites, hosted payload launches and simple orbit 

maintenance, GPP estimation errors are reduced below the 

current 40% to up to 10%, as demonstrated locally using 

CHRIS/PROBA data sets[3]. 

 
3. OBSERVING SYSTEM SIMULATIONS 

 

Multiple satellites in a cluster were simulated to estimate 

BRDF and PRI using a simple observing system simulation 

experiment for each cluster architecture. Earlier studies have 

provided insight into the launch and maintenance 

capabilities of clusters with differential orbital elements[10], 

[16]. Differential semi major axis breaks the cluster and 

differential inclination or eccentricity is impossible to 

maintain with current cubesat propulsion technology. The 

only differential element variables between the satellites are 

mean anomaly (MA) and the right ascension of the 

ascending node (RAAN). Each architecture is therefore a 

function of number of satellites, their differential RAAN 

and MA and the orbit of the chief satellite.  

Our simulations below show that 4 satellites whose MA or 

RAAN are separated by a few degrees are collectively 

capable of estimating the full BRDF of vegetated regions 

within 12% of CAR’s measured BRDF.  This ”gold 

standard” BRDF, used for validation, was collected over 

Southern Africa by CAR during NASA’s SAFARI 

campaign in 2000 [15] and has been used to represent the 

BRDF for all of vegetated Africa in our OSSE. Figure 1-

bottom left shows the truth data as a function of the 

measurement zenith angle (radius) and relative azimuth 

angle with respect to the run (polar azimuth), for a given 

solar incidence (27
o
). The hotspot is apparent in the 

backscattering direction and is an important feature which 

the collective cluster is required to capture. Traditional 

BRDF models such as the RossThick-LiSparse (RLTS) 

model [13],[14] have been shown to produce less than 

0.05% inversion errors when fitted to a dense sample of 

BRDF measurements [10]. Thus, the majority of the BRDF 

errors will be due to sub optimal sampling of the BRDF 

angular plane. 

 

 
 

Figure 1: Top - BRDF error in % over time as the 4 

satellite cluster (different colors represent different 

architectures) flies over Southern Africa. The errors are 

calculated with respect to reflectance (BRDF) measured 

by CAR during NASA’s SAFARI 2000 campaign. The 

black stars represent BRDF error, calculated in the 

same way, by MISR (from Two Line Element data) half 

an hour before in time. Bottom left – CAR collected 

BRDF in the 682 nm band. Bottom right - Image of the 

satellite cluster Config #3 as it flies over Southern Africa. 

 

Six architectures of varying differential RAAN and MA 

among 4 satellites are compared in Figure 1 over the 20 

minutes that they take to fly over Africa, southward bound, 

assuming the BRDF signature over the African subcontinent 

to be as measured in SAFARI. The chief orbit is assumed to 

be at ISS inclination and altitude to tap into easy 

opportunities for ride-share launches. The RMS errors 

represent the difference between CAR measurements and 

satellite measurements from the best (red, Config#3) and 

worst (blue, Config#2) configurations as well as those by 

MISR’s configuration (black stars). The best cluster 

configuration – with only four satellites and no onboard 



propulsion - shows errors equivalent to or better than MISR. 

MISR is used instead of MODIS because of its shorter 

period of multi-angular data acquisition, therefore more 

reliable for temporally changing targets.  

In all the above configurations, the reference satellite is the 

same over the 20-minute period and looks nadir, while the 

other 3 satellites look at the reference satellite’s nadir as 

they move relative to it. Figure 2 shows the effect of 

changing the reference satellite for one of the worst case 

configurations. If the 4
th

 satellite (red) is used as reference 

for the first 6 minutes, followed by the 1
st
 satellite (blue), 

the estimation error is better than that produced by MISR 

(stars) for most of Africa. The errors improve from 18% to 

12%. The minimum of estimation errors in Figure 2 (black 

line) can be achieved by controlling satellite attitudes to 

change the reference satellite, therefore allowing even the 

sub-optimal architectures (e.g. Config#1) to perform 

optimally. 

 

Figure 2: BRDF Error in % over time for the cluster 

Config#1 in Figure 1a as the 4 cluster satellites – 

differential orbital elements shown - are individually 

used as the reference, and the others look at the ground 

spot at its nadir. The thick black line shows the 

minimum estimation error, possible using the 

corresponding satellite as reference. 

 

Errors in BRDF estimation map into errors in PRI 

estimation. PRI is expressed as the normalized difference of 

reflectance at a xanthophyll-insensitive reference band to 

the 531 nm band[19].  

     
             
             

 

Equation 1 

The reflectances are expressed in the RLTS model[19]. 

Since the CAR SAFARI data set does not contain the 531 

nm band, a Gaussian variation of the 682 nm band is used as 

truth. First-Order, second-moment (FOSM) propagation of 

uncertainty for nonlinear functions is used to statistically 

map the uncertainty of reflectance in either spectral band to 

the uncertainty of PRI. By definition of FOSM, the variance 

of a dependent function is a function of the variances of its 

variables and its partial differential with respect to them. 

PRI variance can therefore be represented as a function of 

the reflectance variance at the 531nm and 682nm bands. 

    
     

    

       
 
            

 

 

       
 

    
    

       
 
            

 

 

       
  

Equation 2 

 

Figure 3: PRI Error in % as a function of BRDF error in 

the xanthophyll sensitive vs. insensitive bands for true 

reflection difference of 50%, calculated using first order 

second moment analysis of uncertainty.  

 

The maximum PRI estimation error varies from 10% to 20% 

as the difference in true reflectance at 531 nm is assumed to 

be between 90% to 50% because of inverse proportionality. 

Figure 3 shows dependence of PRI estimation errors on the 

BRDF estimation errors in the two spectral bands as 

calculated using FOSM. Since the BRDF signature of 

vegetation is similar across different bands, the correlation 

between the undersampling errors is likely to be high 

therefore architectures will be concentrated, in the most part, 

the top left or bottom right of Figure 3. The PRI estimation 

improvement is apparent - while the monolithic 

configuration (MISR) shows upto 18% PRI errors, clusters 

(with changing reference satellites using attitude control) 

can bring this error down to 6% due to better angular 

sampling of the BRDF polar plane. Further, since 

photosynthetic efficiency (ε) is a linear function of PRI, 

which linearly maps to GPP for a statistically determinate 

APAR, similar values of error improvement are also 

expected in GPP estimation.  



4. SUMMARY AND FUTURE WORK 

 

This paper shows initial results of the impact of using 

satellite clusters in formation flight, 4 satellites and without 

the necessity of propulsion, on BRDF and PRI vegetation. 

CAR airborne data has been used as the golden standard for 

BRDF estimation and analytically modified to show its 

impact on PRI. Adopting the optimal architecture or 

dynamically changing the reference satellite in orbit leads to 

reduction in PRI errors by up to a third that provided by 

MISR, when compared over some fractions of the orbit. 

Since the CAR instrument does not have the xanthophyll 

sensitive band, future work includes the use of tower data 

for more detailed analysis followed by a full trade study of 

GPP error improvement as a function of number of satellites 

and their orbital orientations. Tower data is available from 

from the automated, multi-angular, spectro-radiometer 

platform called AMSPEC[19] that allows observations in a 

330° view area around the tower and the trade study tool as 

been developed on the MATLAB and Systems ToolKit 

software platform. Satellite clusters therefore hold great 

promise in GPP estimation locally and can be scaled up 

globally by launching more satellite clusters (scalable with 

more imaging demand). They can provide better 

understanding of forest cover and corresponding 

contribution to carbon dioxide emissions.  

 
5. REFERENCES 

 
[1] J. G. Canadell, C. L. Quéré, M. R. Raupach, C. B. Field, E. 

T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. 

Houghton, and G. Marland, “Contributions to accelerating 

atmospheric CO2 growth from economic activity, carbon 

intensity, and efficiency of natural sinks,” PNAS, vol. 104, 

no. 47, pp. 18866–18870, Nov. 2007. 

[2] G. R. Van der Werf, D. C. Morton, R. S. DeFries, J. G. 

Olivier, P. S. Kasibhatla, R. B. Jackson, G. J. Collatz, and J. 

T. Randerson, “CO2 emissions from forest loss,” Nature 

Geoscience, vol. 2, no. 11, pp. 737–738, 2009. 

[3] T. Hilker, N. C. Coops, F. G. Hall, C. J. Nichol, A. 

Lyapustin, T. A. Black, M. A. Wulder, R. Leuning, A. Barr, 

D. Y. Hollinger, B. Munger, and C. J. Tucker, “Inferring 

terrestrial photosynthetic light use efficiency of temperate 

ecosystems from space,” Journal of Geophysical Research: 

Biogeosciences, vol. 116, no. G3, p. n/a–n/a, 2011. 

[4] F. G. Hall, T. Hilker, N. C. Coops, A. Lyapustin, K. F. 

Huemmrich, E. Middleton, H. Margolis, G. Drolet, and T. 

A. Black, “Multi-angle remote sensing of forest light use 

efficiency by observing PRI variation with canopy shadow 

fraction,” Remote Sensing of Environment, vol. 112, no. 7, 

pp. 3201–3211, 2008. 

[5] T. Hilker, N. C. Coops, F. G. Hall, T. A. Black, B. Chen, P. 

Krishnan, M. A. Wulder, P. J. Sellers, E. M. Middleton, and 

K. F. Huemmrich, “A modeling approach for upscaling 

gross ecosystem production to the landscape scale using 

remote sensing data,” Journal of Geophysical Research: 

Biogeosciences (2005–2012), vol. 113, no. G3, 2008. 

[6] T. Hilker, F. G. Hall, C. J. Tucker, N. C. Coops, T. A. 

Black, C. J. Nichol, P. J. Sellers, A. Barr, D. Y. Hollinger, 

and J. W. Munger, “Data assimilation of photosynthetic 

light-use efficiency using multi-angular satellite data: II 

Model implementation and validation,” Remote Sensing of 

Environment, vol. 121, pp. 287–300, 2012. 

[7] F. E. Nicodemus, “Directional reflectance and emissivity of 

an opaque surface,” Applied Optics, vol. 4, no. 7, pp. 767–

773, 1965. 

[8] D. C. Morton, J. Nagol, C. C. Carabajal, J. Rosette, M. 

Palace, B. D. Cook, E. F. Vermote, D. J. Harding, P. R. 

North,“Amazon forests maintain consistent canopy structure 

and greenness during the dry season,” Nature, 2014. 

[9] S. Nag, “Design of Nano-satellite Cluster Formations for 

Bi-Directional Reflectance Distribution Function (BRDF) 

Estimations,” AIAA/USU Conference on Small Satellites, 

Aug. 2013. 

[10] S. Nag, C. K. Gatebe, O.L. De Weck, “Relative Trajectories 

for Multi-Angular Earth Observation using Science 

Performance Optimization,” in IEEE Xplore, Aerospace 

Conference 2014, Big Sky, Montana, USA, 2014. 

[11] S. Nag, K. Cahoy, O. de Weck, C. Gatebe, B. Pasquale, G. 

Georgiev, T. Hewagama, S. Aslam, “Evaluation of 

Hyperspectral Snapshot Imagers onboard Nanosatellite 

Clusters for Multi-Angular Remote Sensing,” in 

Proceedings of the AIAA Space Conference, San Diego, 

2013. 

[12] F. G. Hall, T. Hilker, and N. C. Coops, “PHOTOSYNSAT, 

photosynthesis from space: Theoretical foundations of a 

satellite concept and validation from tower and spaceborne 

data,” Remote Sensing of Environment, vol. 115, no. 8, pp. 

1918–1925, 2011. 

[13] F. G. Hall, T. Hilker, and N. C. Coops, “Data assimilation 

of photosynthetic light-use efficiency using multi-angular 

satellite data: I. Model formulation,” Remote Sensing of 

Environment, vol. 121, pp. 301–308, 2012. 

[14] M. KING, M. STRANGE, P. Leone, and L. BLAINE, 

“Multiwavelength scanning radiometer for airborne 

measurements of scattered radiation within clouds,” Journal 

of Atmospheric and Oceanic Technology, vol. 3, pp. 513–

522, 1986. 

[15] C. K. Gatebe, “Airborne spectral measurements of surface–

atmosphere anisotropy for several surfaces and ecosystems 

over southern Africa,” Journal of Geophysical Research, 

vol. 108, no. D13, 2003. 

[16] S. Nag, O. L. De Weck, and D. W. Miller, “Maintenance 

Feasibility of a Small Satellite Cluster making Bi-

Directional Reflectance Measurements,” in Proceedings of 

the Small Satellites Systems and Services Symposium (4S), 

Porto Petro, Majorca, 2014. 

[17] C. K. Gatebe, O. Dubovik, M. D. King, and A. Sinyuk, 

“Simultaneous retrieval of aerosol and surface optical 

properties from combined airborne-and ground-based direct 

and diffuse radiometric measurements,” Atmospheric 

Chemistry and Physics, vol. 10, no. 6, pp. 2777–2794, 2010. 

[18] M. O. Roman, C. K. Gatebe, Y. Shuai, Z. Wang, F. Gao, J. 

Masek, and C. B. Schaaf, “Use of In Situ and Airborne 

Multiangle Data to Assess MODIS- and Landsat-based 

Estimates of Surface Albedo,” 2012. 

[19] T. Hilker, N. C. Coops, F. G. Hall, T. A. Black, M. A. 

Wulder, Z. Nesic, and P. Krishnan, “Separating 

physiologically and directionally induced changes in PRI 

using BRDF models,” Remote Sensing of Environment, no. 

112, pp. 2777–2788, 2008. 


