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Abstract—This paper presents an Orbit Maintenance
Module (OMM) for Tradespace Analysis Tool for
Constellations (TAT-C), a software package to ex-
plore a wide range of tradespaces to design con-
stellations for Earth observation. As the tool is
primarily meant for rapid pre-Phase A analysis, it
has to be able to estimate trade-offs and overall
performance parameters with simplified models on
a personal computer in a reasonable time frame.
The OMM estimates the secular drift of relative
orbital elements between pairs of satellites due to
the gravitational ‘J2’ effects and the drift of alti-
tude due to the atmospheric drag, and computes
maneuvers to correct them. The J2 is a predominant
term in the gravitational zonal harmonics which,
primarily, affects the argument of perigee and the
mean anomaly. We estimate the drift of these
elements between pairs of satellites using a fourth-
order polynomial, which is trained using machine
learning and which depends on the inclination, al-
titude and initial angular separation in true anomaly
and right ascension of the ascending node. An
analytical model is used to predict the deorbiting rate
depending on the initial altitude, the solar cycle, the
satellite’s mass, drag coefficient and area. In order
to maintain the required topology of a constellation,
the drift of orbital elements is compensated using
emulated orbital maneuvers, when satellites breach
a user-defined threshold percentage of their nominal
values. We assume simple orbital maneuvers (i.e.,
orbit phasing and Hohmann transfer) to determine
the required delta-V, propellant consumption and
frequency of maneuvers. These parameters are
provided as outputs of the TAT-C’s OMM, which
advises the user on trade-offs between performance
and maintenance overhead of all enumerated constel-
lation architectures. The maneuver metrics can be
used to determine various dependent metrics, such
as time available for observations, impact on total
satellite mass, and mission cost.
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1. Introduction
In the recent decade, constellations of Earth observation
satellites are gaining momentum with many mission
designs and a few operational missions. Exciting ad-
vancements have been made in the use of multiple
satellites to improve the revisit time and/or to diversify
the measurement type. For example, the Afternoon
Constellation (A-Train) had seven satellites in a train
formation launched between 2002 and 2014, each taking
different measurements to characterize the environment.
Planet Labs Inc. is imaging every location of the Earth
every day with a flock of more than 200 satellites.
While Planet’s CubeSats are distributed in orbit using
the differential drag, constellations of larger and more
advanced satellites, such as Iceye, will need to maintain a
certain topology to maximize the output of each satellite.

In addition to the complexity of conventional mechan-
ics of single satellites, the constellation design poses
new challenges associated with an increased number of
satellites and their topology. In order to address these
and other challenges related to the constellation design,
Tradespace Analysis Tool for Constellations (TAT-C)
is being developed by NASA Goddard Space Flight
Center and collaborators. TAT-C facilitates pre-Phase A
investigations and optimizes Earth Observation (EO)
constellations with respect to a priori science goals. It
helps to choose the type of a constellation, number of
satellites, and what trade-offs are associated with various
designs. [1], [2]

This paper presents the TAT-C’s Orbit Maintenance
Module (OMM) which estimates the relative secular
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drift in orbital elements, and the trade-offs associated
with corresponding orbital maneuvers. We characterize
relative drifts due to two dominating effects – the Earth’s
oblateness and the atmospheric drag. By accounting for
these effects, we can derive the first-order estimation of
the ∆V budget for maintaining the constellation’s topol-
ogy. Typically, such analyses are performed by numer-
ically propagating orbits with perturbations. However,
it is not possible to run full-fledged or even limited orbit
propagators for a range of inclinations, altitudes, orbital
planes, angular separations between satellites and for a
number of satellites in a reasonable time frame.

The Earth’s gravitational potential can be expressed
using spherical harmonics with coefficients Jn [3]. The
J2-term expresses the effect of the Earth’s North–South
hemisphere oblateness which is larger than other terms
by orders of magnitude and, therefore, dominates the
gravitational perturbations. The mean classical orbital
elements can be used to calculate the absolute secular
drift of the Right Ascension of the Ascending Node
(RAAN), the Argument Of Perigee (AOP) and the Mean
Anomaly (MA). To the first order of J2, there are no
long-periodic and no secular variations in the remaining
orbital elements [4, p. 37] [5, p. 647–652]. The mean
elements are invariant with respect to the True Anomaly
(TA) or the MA which means that the predicted drift
will be equal for satellites with the same Semi-Major
Axis (SMA), inclination and eccentricity. However, two
satellites with different TAs in the same orbit experience
slightly different gravitational potential which introduces
a relative drift in their angular separation.

The atmospheric drag causes orbital decay – a decrease
in the SMA which, in turn, causes the orbital period
to decrease and the velocity to increase. For a circular
orbit, these changes can be modeled depending on the
drag coefficient, the drag area, the satellite’s mass and
the atmospheric density [6, p. 215]. While the first
three depend on the satellite design and are generally
known by engineers, the atmospheric density depends
on various factors, such as effects of the day–night,
semi-annual and 11-year solar-cycle variations in the air
density. For EO mission analyses in TAT-C, the lifetime
is typically much larger than one year and the altitude
is larger than 300 km. Therefore, the most profound
changes in the atmospheric density are induced by solar
cycles. We are interested in designing future missions
but predicting the solar activity is a rather difficult task.
We use a very rough-and-ready method to calculate the
atmospheric density depending on the density estimation
during the solar minimum and the maximum, as well as
the time within a solar cycle. [7, p. 241–251]

The OMM is designed to explore the following
tradespaces in homogenous constellations, with satellites
distributed uniformly according to the Walker pattern or
with user-defined initial elements.

• Altitude between 300 and 1000 km;
• Inclination between 0◦ and 180◦;
• TA between 0◦ and 360◦;
• RAAN between 0◦ and 360◦;
• Number of satellites between 2 and 72;
• Number of orbital planes between 1 and 72.

TAT-C can also explore the tradespace of heterogeneous
Walker and ad-hoc constellations, as well as precessing-

type and train constellations [8]. The first two are
not designed to be maintained in a constant topology,
however if certain aspects of their topology (e.g., the
spread of satellites in a single orbital plane) are required
to be preserved, some models presented here can be
applied. Maintenance of the last two can be computed in
the same way as homogeneous Walker, once deployment
is complete and orbits are stable, therefore all the results
of this paper will hold for them as well.

To estimate the secular drift of the angular separa-
tion due to J2, we use General Mission Analysis Tool
(GMAT) to run a large number of Monte Carlo simula-
tions in the given Keplerian element ranges for five days.
Results show that data from longer simulations lead
to higher fidelity results for multi-plane constellations,
however, the proposed methodology remains the same.
Each simulated constellation consists of 72 satellites
which maximizes the number of pairs. By analyzing
the drift between non-neighbors, we can effectively study
a smaller constellation. The implementation presented
in this paper assumes that at a given altitude and
inclination, secular relative drift rates are linear and,
therefore, can be scaled for other time frames. Orbits
are near circular with an eccentricity of 0.001 which also
makes the TA and the MA numerically very similar.

The drift rate of the AOP alone is of a little interest.
However, since the perigee serves as a reference for TA
and MA, the relative drift in the Argument Of Latitude
(AOL), a sum of AOP and TA, is used to measure the
drift between satellites within orbit. The benefit of using
the AOL is its stable reference – the ascending node.
Furthermore, the relative AOL is also used as the phase
difference between satellites in adjacent planes.

The investigation of the relative RAAN drift showed
negligible rates – at an order of magnitude of one degree
per year between satellites with different RAANs and
even less for satellites with equal initial RAANs. In
addition, RAAN maneuvers require ∆V-expensive plain
changes which have to be carefully considered when
designing a mission. Therefore, for the purpose of
OMM’s rapid pre-Phase A analysis, relative RAAN drift
rates are not considered.

For the AOL, we find the largest relative drift rates de-
pending on the altitude, inclination, as well as initial TA
and RAAN separations. Although the absolute initial
TA influences the relative AOL drift rate, the model is
trained to estimate the maximum values because specific
TAs are not known before the Phase A. The initial
altitude, inclination and TA/RAAN separations along
with largest drift rates after five days are used to train
polynomial regression models with machine learning. We
train a fourth-order model at seven inclination groups
between 6◦ and 174◦. For equatorial orbits (inclinations
in the range of 6◦), we train a liner model that depends
on the initial TA separation and the altitude. As a
result, we have a model that predicts the maximum
relative drift rate in the AOL in nine inclination groups
depending on the initial conditions and the time frame.
To account for various drift rates depending on the
initial TA when emulating a constellation, the drift
rates are scaled using a cosine. The models are verified
and characterized using a data set from independent
simulations.
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Since the AOL drift model depends on the altitude, it
is coupled with a deorbiting model which predicts the
change in altitude due to the atmospheric drag. In order
to estimate the ∆V budget, the timeline of maneuvers
and the propellant consumption, drift-prediction models
are run iteratively until satellites breach a user-defined
threshold percentage of their nominal values, or the
end of mission lifetime is reached. When a correction
is required, the OMM calculates maneuver metrics by
assuming either orbit phasing or Hohmann transfer
maneuvers to correct for the AOL drift or altitude drop,
respectively. After emulating a maneuver, a relative
orbital element is set to its nominal value.

The paper is organized as follows. Section 2 presents
development and validation of models that estimate the
AOL relative drift rate due to J2. Section 3 presents
the model that estimates the altitude drop due the
atmospheric drag along with validation of the model.
Section 4 presents the coupling of models, algorithm for
orbit maintenance, and validation with GMAT which
simulates perturbations along with actual maneuvers.

2. Gravitational perturbations
Drift estimation model

Gravitational perturbations cause two satellites to drift
with respect to each other. Here we present a model
to estimate the relative drift exptected in the AOL. To
estimate largest drift rates, a general model, given by
Equation 1, is used [9].

h = θ0x0 + θ1x1 + . . .+ θnxn (1)

h is the hypothesis that correspond to target variables
(see yM below).

θ0...n are coefficients, expressed as Θ in a vector form.

x0...n are features.

When training the model, we must find Θ via the normal
equation (Formula 2) where X, given by Equation 3, is
defined by numerical values of features of all training
samples.

Θ = (XTX)−1XT yM (2)

X =


x0(1) x1(1) · · · xn(1)
x0(2) x1(2) · · · xn(2)

...
...

. . .
...

x0(m) x1(m) · · · xn(m)

 (3)

m is the number of training samples.

Θ must be be solved for AOL drift rates in nine inclina-
tion groups, as detailed below. Θ(i) is used to distinguish
coefficients for different inclination groups.

yM is a vector of target variables of relative AOL drift
rates in their worst cases (i.e., maximum drift rates at
certain initial conditions).

When applying the model, we must solve Equation 4. If
the model is used to predict a single case, X is a vector.

yM = ΘX (4)

The following considerations are used when selecting
features. These consideration steam from the initial
attempt to develop a linear model which proved to be
insufficient and, therefore, is not presented in the paper.

• To estimate the maximum AOL drift rates, at least a
fourth-order polynomial is needed because the behavior
is not always symmetric with respect to the 90◦ initial
TA separation as a parabola would imply, and cubic
function’s two bends would also not suffice.
• The inclination, the altitude and the initial RAAN
separation seem to be correlated with the initial AOL
separation. Therefore, we use all of them to define the
initial conditions for estimating maximum drift rates.
• Drift rates at equatorial orbits are difficult to predict
(i.e., characterize with a certain function). A linear func-
tion is used to set an upper threshold (somewhat similar
as assigning a rectangular probability distribution for
measurements with an unknown distribution).

We found the features defined by Equation 5 to be useful
at predicting the maximum relative drift in most of the
cases.

x0 = 1 x1 = νs x2 = ν2s x3 = Ωs

x4 = Ω2
s x5 = i x6 = i2 x7 = z

x8 = νsΩs x9 = ν2sΩs x10 = νsΩ
2
s x11 = ν2sΩ2

s

x12 = νsi x13 = ν2s i x14 = νsi
2 x15 = ν2s i

2

x16 = νsz x17 = ν2sz x18 = ν3s x19 = ν4s

(5)

νs is the initial TA separation in the range [0◦, 180◦].

Ωs is the initial RAAN separation in the range [0◦, 180◦].

z is the altitude in the range [300 km, 1000 km].

i is the inclination in the range [0◦, 90◦]. If the
inclination is in the range [90◦, 180◦], then
isym = 180◦ − i should be used.

The solution (i.e., specific Θ) is sensitive with respect
to the inclination. In other words, a single Θ is not
efficient at predicting drift rates at various inclinations
(at least with our model). Therefore, we use the
following inclination groups to train and use the model:

• 6◦–20◦ & 160◦–174◦;
• 20◦–40◦ & 140◦–160◦;
• 40◦–55◦ & 125◦–140◦;
• 55◦–70◦ & 110◦–125◦;
• 70◦–85◦ & 95◦–110◦;
• 85◦–90◦;
• 90◦–95◦;
• 0◦–6◦;
• 174◦–180◦.

Note that the inclination itself is not affected by the
J2 and drag, which allows us to keep the inclination
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group as a constant in the simulation throughout the
mission lifetime. Moreover, the last two (equatorial)
groups are trained with a set of just two features defined
by Equation 6.

x0 = 1 x1 = νsz (6)

Application of model on any constellation architecture

As noted earlier, yM is an estimate of the maximum drift
rate at certain initial conditions. Within a constellation,
drift rates vary from satellite to satellite between ±yM .
Therefore, within an orbital plane, values are adjusted
using a cosine. Since the model was trained for a period
of five days (432000 seconds), linear scaling of drift rates
is required when different periods are considered. We
emulate a constellation in terms of ys (per Equation 7)
and yp (per Equation 8), as described below.

ys =
tyM

432000
cos

(
π((s+ rs) mod Ns)

Ns

)
(7)

ys is the relative AOL drift rate of the sth satellite pair
in an orbital plane.

s is the pair’s index in the range [1, Ns].

Ns is the number of pairs per plane.

rs is an integer in the range [1, Ns]. r1 is selected
randomly and increased by one when drift rates for
the pair s + 1 are calculated. The expression (s +
rs) mod Ns randomizes at which satellite the periodic
function starts when initiating a constellation. Without
such randomization, the first and the last satellite within
an orbital plane would always be assigned largest ±yM
values which is not realistic.

t is the period for which drift rates are estimated.

Similar behavior is assumed for drift rates between satel-
lites in different orbital planes. However, as explained in
Section 4, the inter-plane AOL drift is not necessarily
linear. The inter-plane relationship is expressed in
Equation 8. We assume that all satellites within a plane
have this same relative drift with respect to all satellites
in another plane.

yp =
tyM

432000
cos

(
2π((p+ rp) mod Np)

Np

)
(8)

yp is the relative AOL drift rate between satellites in the
pth orbital plane pair. When calculating yM , note that
νs = 360◦

NsNp
, according to the Walker-Delta pattern.

p is the index of an orbital plain pair in the range [1,
Np].

Np is the number of orbital planes.

rp is an integer in the range [1, Np] with a similar
function and behavior as rs.

Note that Equations 7 and 8 merely give a rough approx-
imation how the relative AOL drift rate vary between
satellite pairs within a plane and between planes. The
actual behavior varies from case to case. However, the
variations are periodic in the range of ±yM . Therefore,
on average, variations and the total corresponding ∆V
should be estimated conservatively.

To summarize the model, a) it is trained to estimate
AOL relative in- and inter-plane drift rates between
satellite pairs with Equation 2 and with features given
by Equation 5; b) nine inclination groups are used
resulting in nine sets of Θ(i); c) for equatorial orbits,
a simple linear model is used given by Equation 6,
and d) drift rates for different satellite/plain pairs are
distributed between plus-minus maximum drift rates
given by Equations 7 and 8.

Training the drift estimation model

In order to train the model and characterize the drift
rates, we use Monte Carlo batch simulations in GMAT,
with initial conditions within ranges of orbital elements
presented in Introduction. Only JGM-2 gravitational
perturbations are enabled and Brouwer–Lyddane long-
term averaged mean elements are used to calculate
relative AOL drift rates. Since orbits are near circular,
the AOL is calculated as a sum of the AOP and the MA.

Equation 2 is solved using yM with inclination i groups
given in the previous subsection. For groups 0◦–6◦

and 174◦–180◦, we used features given by Equation 6.
For other groups, features given by Equation 5 are
used. The training was performed on 8077 simulation
results. Each simulation has 72 satellites which results
in 2556 combinations of satellite pairs. Their initial TA
separation ranges from 5◦ to 180◦ with 5◦ steps. For
training, we use maximum drift rates yuM after five days
in each TA separation group.

The outcome of training are Θ(i) coefficients, given in
Appendix A.

We present some of the worst cases (i.e., includes under-
estimations of the maximum drift rate) from three simu-
lations, as compared with predictions using Equation 4.
Here, the model has been applied on the same data
set which was used for training. The next subsection
presents validation of the model with an independent
data set. Mid-inclination, polar and equatorial cases are
presented in Figure 1. Blue circles represent the drift
between every pair of 72 satellites under J2 over five
days. The period of five days has been used to generate
the training data set. As Equations 7 and 8 show, drift
rates can be extrapolated for longer periods. The orange
line represents an estimation of the largest drift in each
TA separation group. The periodicity is not included in
the estimation since we are not emulating a constellation
yet but rather characterizing the model.

For TAT-C, the goal is to estimate the total ∆V re-
quired to maintain a topology. Therefore, we are more
interested in the total maintenance resources as opposed
to specific satellite pairs presented in Figure 1. For
example, while the drift between satellites in different
orbital planes has a large variation, the model captures
the average upper bound quite accurately. Figure 2
shows the average drift rates for the AOL as simulated
under J2 and as predicted by the model using the
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(a) Inclination of 36◦ and altitude of 378 km. Twelve orbital
planes with six satellites per plane.
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(b) Inclination of 88◦ and altitude of 419 km. Nine orbital
planes with four satellites per plane.
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(c) Inclination of 0.3◦ and altitude of 614 km. Two orbital
planes with 36 satellites per plane.

Figure 1: The AOL drift rate for all pairs of 72
satellites, as a function of the the initial TA separation,
under J2 perturbations (blue circles), and an estimate
of the largest AOL drift rates from our proposed model
(orange line).
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Figure 2: Average AOL drift rates due to J2 and as
predicted by the model over five days. The training data
set is used here.
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Figure 3: Average AOL drift rates due to J2 and as
predicted by the model over five days. The validation
data set is used here.

training data set. Owing to our large training data, on
average, there are no noticeable differences between the
simulated J2 drift rates and the modelled ones.

Validating the drift estimation model

In order to validate the model, an independent data set
of 2000 simulations is used. Figure 3 shows the average
drift rates for the AOL as simulated under J2 and as
predicted by the model using the validation data set. For
nearly all inclination groups, the model predicts the AOL
drift rates under J2 fairly well. The model works less well
for equatorial orbits by overestimating drift rates in the
inclination group of 0◦–6◦ and underestimating for 174◦–
180◦. This suggests that the same model is not suitable
for both inclination groups, and their training can be
partitioned for future research. Note that equatorial
orbits are seldom used for EO and the drift rate of almost
1◦ per day suggests that stationkeeping is expensive.

3. Atmospheric drag

Deorbiting model

The deorbiting rate due to the atmospheric drag in near
circular orbits can be estimated using Eq. 9 [6, p. 215].

∆arev = −2π

(
CdA

m

)
ρa2 (9)

∆arev is the change in the SMA per revolution.
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Cd is the drag coefficient.

A is the is the satellite’s cross-sectional area.

m is satellite’s mass.

a is the initial SMA.

ρ is the atmospheric density.

For missions whose lifetimes are multiple years and
altitudes are larger than 300 km, we model the atmo-
spheric density depending on the 11-year solar cycle and
ignore variations with smaller periods, such as the day–
night and semi-annual cycles. Nevertheless, predicting
the atmospheric density is a daunting task due to the
irregular behavior of the solar activity. However, TAT-C,
as its name suggests, is a tool for exploring tradespaces
and, therefore, it is sufficient to estimate the total ∆V
budget with a safety margin. We use a simple analytical
representation of the atmospheric density which is given
in Equation 10 [7, p. 246].

ρ = ρm + (ρM − ρm)sin4(
πts
P

) (10)

ρ is the atmospheric density at a given time during the
solar cycle.

ρm is the density at a given altitude during the solar
minimum.

ρM is the density at a given altitude during the solar
maximum. We use a lookup table to find ρm and ρM for
a specific altitude [6, p. 1031]. Since the table provides
densities for altitudes with 50- or 100-km step sizes,
linear interpolation is used to find a density at a given
altitude.

P is the period of a solar cycle. While the period
is ≈11 years, it varies from cycle to cycle, and the
beginning is usually not well defined. Defining P

2 such
that it coincides with the solar maximum will provide
the most reliable results.

ts is the time measured from the solar minimum.

Validating the deorbiting model

We validate the model by propagating a satellite for 100
days, starting at various epochs (satellites deployed at
different absolute start dates) under the atmospheric
drag. We compare deorbiting rates with the ones
predicted by Equation 9. Figure 4 shows results from
the comparison. Blue circles show propagation with
the Jacchia–Roberts atmospheric model and the orange
line shows estimation with the model presented above.
The reference for the relative epoch is November 1, 1995
which approximately coincides with the beginning of the
last full solar cycle. The solar-cycle period is set to 10.5
years which is not strictly correct but helps to align P

2
with the solar maximum. The rapid deorbiting rate on
the absolute scale is because we selected a three-unit
CubeSat with a mass of 3.8 kg, the drag coefficient of
2.2 and the satellite’s cross-sectional area of 0.1156 m2,
as a pessimistic estimate for deorbiting validation. As
expected, the model presents the general trend that
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Figure 4: Loss of spacecraft altitude as a function of its
deployment epoch/time, as evaluated by orbit propaga-
tion on GMAT with the Jacchia–Roberts atmospheric
model (blue circles), and by the model proposed for
TAT-C’s OMM (orange line). Each blue circle presents
the final altitude after 100 days starting from 550-km
altitude. For each consecutive simulation, the epoch is
increased by three days.

the deorbiting rate increases as the epoch approaches
the solar maximum which takes place right before the
relative epoch of six years. It provides the worst-
case scenario for deorbiting rates which is desirable for
TAT-C.

4. Orbit maintenance
The OMM of TAT-C uses user-defined inputs in com-
puting orbital degradation per the presented models,
followed by orbital maneuvers, propellant accounting
and other output metrics, per user-defined requirements,
for further tradespace analysis. Figure 5 summarizes
the information flow within the OMM. A mission is
advanced by iteratively stepping through time since the
epoch of a mission until its lifetime is breached. Every
orbit, the change in altitude is calculated. Every day
(or a customizable time step), the relative drift in AOL
is recalculated and the atmospheric density is updated.
When drift rates breach the user-defined thresholds, the
next time step/s is allocated for performing maneuvers.
The timeline of maintenance, including the maneuver
type, satellite/plane index and ∆V, is saved along with
the mass of leftover propellant of each satellite.

Constellation architectures

The current version of TAT-C explores a tradespace
of constellation architectures, where the satellites have
the same dry mass, drag coefficient and area, as well
as the same initial propellant mass. The homogeneous
Walker, train and precessing-type (upon stabilization)
architectures place all satellites in orbits with equal
initial altitudes and inclinations [8]. The satellites in
heterogeneous Walker and ad-hoc constellations experi-
ence large relative drifts among the satellites because
their orbits have different altitudes and/or inclinations.
The presented models of in-plane maintenance may be
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Figure 5: Information flowchart for the Orbit Maintenance Module.

used to compute metrics for heterogeneous Walker, but
from an inter-plane perspective, such constellations are
characterized by their constantly changing topologies.
For the purpose of presenting OMM’s results in this
paper, a homogeneous Walker constellation is defined
by its altitude, inclination the number of orbital planes
and the number of satellites per plane. Since they
are distributed uniformly according to the Walker-Delta
pattern, only the first satellite’s TA and RAAN are
required as inputs. The user can also chose to replace
default solar cycle parameters – the start date and the
period. All orbits are assumed circular.

Orbital maneuvers

To correct for the drifting relative AOL and altitude,
we use simple orbital maneuvers of orbit phasing [5,
p. 362] and Hohmann transfer [6, p. 226], respectively.
Single impulse of chemical propulsive maneuvers are
currently modeled, however, the OMM may be expanded
to include electric propulsion in the future. The relative
AOL drift is compensated by each satellite emulating a
phasing maneuver equal to a half of the relative drift
between one out of two neighbors. For example, the first
satellite compensates a half of the drift between the first
and the second satellite. Since orbits are not propagated,
the maneuvers are used to calculate the required ∆V and
corresponding elements are just reset to their nominal

values. When a pair of satellites within a plane breach a
threshold, orbital maneuvers are emulated for all satel-
lites in the plane. Note that relative corrections between
a pair of satellites possibly automatically alleviates or
worsens the relative error between one of them with
respect to a third, since all satellites are arranged in
a homogenous circle. A similar approach is taken with
the inter-plane AOL drift – as soon as the threshold is
breached between satellites in two planes, the relative
drift is corrected for satellites in all planes. Such an
approach simplifies the code, provides the same average
∆V estimates and also keeps the relative differences in
elements to a minimum which, in turn, minimizes the
future relative drift. The propellant mass is decreased
by calculating the impulse using ∆V from emulated
maneuvers and then using the given specific impulse of
the propulsion system.

Validating the Orbit Maintenance Module

We validate the OMM of TAT-C by running GMAT
simulations that the OMM attempts to emulate without
running orbital perturbations, and comparing them to
the OMMs results, for two use cases – CYGNSS (Cyclone
Global Navigation Satellite System) and TROPICS
(Time-Resolved Observations of Precipitation structure
and storm Intensity with a Constellation of Smallsats).
OMM’s results capture the automation of maintaining
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any given constellation – estimation of orbital degrada-
tion, orbital maneuver computation, and the resultant
corrected orbits. First, a single orbital plane case of
a constellation similar to CYGNSS is validated. The
following satellite, orbital and constellation parameters
are used to set up the GMAT simulation and the
OMM [10].

• J2 and atmosphere models enabled.
• The satellite mass of 27.5 kg with additional 7 kg for
the propulsion system and propellant, since the original
design does not include a propulsion system.
• Eight satellites distributed uniformly in a single orbit.
The initial TA separation is 45◦.
• Constellation altitude of 525 km.
• Constellation inclination of 35◦.
• The first satellite’s (sat0) TA of 207◦.
• The first satellite’s RAAN of 144◦.
• Drag coefficient of 2 with the drag area of 0.1428 m2.
• Specific impulse of 230 s.
• Initialization epoch on December 15, 2016 at 13:37
UTC.
• AOL drift threshold of 0.5% (0.225◦).
• Altitude drop threshold of 0.1% (0.525 km).
• Although the mission lifetime is two years, we simulate
31 days because the drift cycles and corresponding
maneuvers are periodic.

The phasing maneuvers within the GMAT comparison
scenario are performed slightly differently than those by
the OMM, however the effect on constellation topology
or maintenance metrics remains minor. In GMAT, the
first satellite is used as a reference for the AOL and each
sequential satellite is maneuvered to an AOL with 45◦

steps. Such an approach requires slightly less propellant
than correcting for a half of the relative AOL drift. This,
in turn, overestimates the propellant budget which is
desirable for TAT-C.

Figure 6 shows the relative AOL between eight satellites
in a CYGNSS-like constellation, as simulated by GMAT.
It takes nearly five days for the relative AOL between
sat3 and sat4 to breach the 0.225◦ threshold. An auto-
mated sub-function in GMAT performs the maneuvers
satellite by satellite. With the exception that it takes
more time, the effect is the same as maneuvering all
satellites simultaneously but GMAT does not provide
such functionality. A satellite is propagated to the
perigee where the first phasing maneuver is performed
following the second maneuver after an orbit. While the
maneuver sub-function is executed, the AOL values are
not reported and, therefore, the relative AOLs remain
constant. When all satellites have performed their
phasing maneuvers, GMAT returns to the main sequence
which reports the relative AOLs. They are not nullified
entirely because the satellites continue to drift during
the maneuver phase. Over 31 days, the relative AOL
drift is compensated six times.

Figure 7 shows the altitude drop of the CYGNSS con-
stellation, as simulated by GMAT. During the 31-day pe-
riod, the altitude threshold is breached and compensated
once around day 22. A Hohmann transfer is performed
by propagating the satellite to the perigee, where apogee-
raising maneuver is performed, and then to the apogee
where the circularization burn is performed.

Table 1 summarizes all maneuvers along with the time
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Figure 6: GMAT simulation results: The relative AOL
drift between eight consecutive satellites of the CYGNSS
constellation, and phasing maneuvers that correct for the
drift when a 0.5% threshold is breached.
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Figure 7: GMAT simulation results: The altitude
drift of eight satellites of the CYGNSS constellation,
and Hohmann transfers that raise orbits when a 0.1%
threshold is breached.

when a threshold was breached and the total mass of pro-
pellant required to perform maneuvers, and represents
the GMAT simulation results that the OMM results are
compared against. Phasing maneuvers correct for drifts
due to gravitational perturbations, while Hohmann ma-
neuvers correct for altitude drop due to the atmospheric
drag. Each set of phasing maneuvers requires ≈0.11 kg
of propellant and the Hohmann transfer – 0.0323 kg.
Table 2 summarizes the results of the OMM which
emulated the CYGNSS constellation with the same
parameters. The phasing maneuvers are only slightly
more expensive requiring >0.13 kg per set of maneuvers.
The propellant required for the Hohmann transfer is
nearly the same for both approaches, validating OMMs
proposed corrections. The most noticeable difference
is the number of phasing maneuvers. In GMAT, the
relative AOL drifts faster than in the OMM resulting
in six versus five maneuvers. Nevertheless, the OMM

8



budgets for slightly more propellant due to the designed
overestimation when performing phasing maneuvers,
therefore sufficiently compensates for this difference.

Table 1: GMAT simulation result to validate against
TAT-C’s OMM: A sequence of maneuvers and the re-
quired propellant.

Maneuver Time (days) Required propellant (kg)
Phasing 4.9 0.10986
Phasing 9.8 0.10978
Phasing 14.7 0.10998
Phasing 19.6 0.10991

Hohmann 21.5 0.03230
Phasing 24.5 0.11021
Phasing 29.4 0.11059

Total: 0.693

Table 2: TAT-C OMM results: A sequence of maneu-
vers and the required propellant.

Maneuver Time (days) Required propellant (kg)
Phasing 5 0.13389
Phasing 11 0.13472
Phasing 17 0.13465

Hohmann 21 0.03536
Phasing 23 0.13449
Phasing 29 0.13266

Total: 0.706

Second, we attempt to validate a case where satellites
are placed in multiple orbits and experience the relative
AOL inter-plane drift. The TROPICS constellation [11]
was simulated with three orbital planes containing two
satellites each. Figure 8 shows that the relative AOL
inter-plane drift is not linear in the timescale of five days
which was used in training the model. Therefore, the
current OMM model largely overestimates the relative
AOL inter-plane drift (i.e., a breach is predicted five
times earlier than it takes place in GMAT), and needs
a scaling correction. Data simulations within similar
parameters as proposed in this paper, except with a
longer timescale, are required to to train the model and
improve its fidelity. The GMAT validation data in Fig-
ure 8 demonstrates that the AOL drift behavior across
planes can be approximated by a linear fit, even if the
shorter timespans are characterized by periodic oscilla-
tions. Corrections computed from linearized predictions
will therefore be a sufficient pre-Phase A assumption for
maintenance overhead for a multi-plane constellation.

5. Summary and future work
We have developed an Orbit Maintenance Module
(OMM) for Tradespace Analysis Tool for Constella-
tions (TAT-C). The module includes computationally-
lightweight models which estimate the secular relative
drift of orbital elements due to J2 gravitational effects
and the atmospheric drag.

The J2, primarily, affects the Argument Of Latitude
(AOL) which is a sum of the argument of perigee and the
true anomaly. The maximum secular drift of the AOL is
estimated by a fourth-order model with 20 features. It
depends on the initial separation in the true anomaly and
in the right ascension of the ascending node, as well as
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Figure 8: GMAT simulation results: The relative AOL
drift between satellites in the three orbital planes of the
TROPICS constellation.

on the altitude and the inclination. The normal equation
was used to train the model with a data set generated
using Monte Carlo simulations in GMAT. Coefficients
were found for each affected element in nine inclination
groups. When emulating a constellation drift rates are
assigned within the range of plus-minus the maximum
modeled drift.

The deorbiting rate is estimated using a pre-existing
analytical model which depends on the atmospheric
density. We account for the 11-year solar cycle using
a very rough-and-ready model. The model ignores
short-term variations within the cycle which ultimately
depend on fairly unpredictable sunspots. Nevertheless,
we validated that both models combined can predict the
general deorbiting trend and set an upper limit for the
deorbiting rate. Orbital maneuvers of Hohmann transfer
and orbit phasing are emulated to estimate the needed
∆V and the corresponding propellant consumption when
drift rates breach a given threshold.

The OMM has been validated against a single orbital
plane case of CYGNSS simulations in GMAT. The
OMM underestimated the relative AOL drift rate by
≈10% which was compensated by a ≈20% overestimate
in propellant consumption resulting in a slight overall
overestimate (<2%) in the total propellant consumption.
The altitude drift rate and propellant consumption were
estimated within 10%, therefore the 5-day dataset and
subsequently trained model was validated to be appro-
priated for in-plane and altitude drifts. In the three
orbital plane case of TROPICS, the relative inter-plane
AOL drift turned out to be non-linear rendering the
OMM model, which was trained on five-day data sets,
largely overestimating the drift rate. Therefore, the
future work includes the following.

• Development of a model which is trained on timescales
of several months for the relative AOL inter-plane drift.
• Validation against a larger set of high-fidelity constel-
lation simulations.

Setting up a constellation in the orbit maintenance mod-
ule takes ∼1 minute if the orbital elements and satellite
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parameters are known. Setting up a constellation in
GMAT can a take time between an hour to a day,
depending on the size of a constellation and the user’s
experience. Running a multi-year mission in the OMM
takes several seconds on a modest laptop while a GMAT
simulation can take a couple of hours. A short set-up
time and fast execution are the main benefits of the pre-
Phase A analysis in TAT-C to get reliable estimates for
orbit maintenance.
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Appendices

A. Θ(i) coefficients

Θ(6◦ . . . 20◦
⋃

160◦ . . . 174◦) =

[5.46e-01, 1.11e-03, -1.76e-05, 4.74e-03, -1.77e-05, -3.74e-
02, 2.08e-04, -1.48e-04, -3.26e-05, 1.68e-07, 1.28e-07, -
6.35e-10, 1.73e-04, -7.35e-07, -9.67e-07, 4.11e-09, -3.11e-
08, 2.09e-10, 9.62e-08, -2.30e-10]

Θ(20◦ . . . 40◦
⋃

140◦ . . . 160◦) =

[-3.08e-01, 5.11e-03, -2.72e-05, 4.22e-03, -1.71e-05, 1.58e-
02, -8.75e-05, -1.19e-04, -6.07e-05, 3.19e-07, 2.18e-07, -
1.09e-09, 2.02e-05, -1.88e-07, -1.23e-07, 1.09e-09, -8.60e-
07, 4.17e-09, 1.45e-08, 2.20e-11]

Θ(40◦ . . . 55◦
⋃

125◦ . . . 140◦) =

[-5.01e-01, 1.31e-02, -1.19e-04, 6.19e-03, -2.48e-05, 1.77e-
02, -9.80e-05, -2.13e-04, -7.60e-05, 3.86e-07, 2.46e-07, -
1.14e-09, -7.25e-06, -6.31e-08, 1.41e-08, 4.83e-10, -8.20e-
07, 4.89e-09, 3.19e-07, -4.24e-11]

Θ(55◦ . . . 70◦
⋃

110◦ . . . 125◦) =

[7.68e-01, 1.91e-02, -3.38e-04, 3.99e-03, -1.79e-05, -1.10e-
02, 5.56e-05, -3.41e-04, -1.08e-04, 6.01e-07, 5.01e-07, -
2.79e-09, 2.24e-04, -1.21e-06, -1.28e-06, 6.91e-09, -1.23e-
06, 6.41e-09, 1.95e-06, -3.29e-09]

Θ(70◦ . . . 85◦
⋃

95◦ . . . 110◦) =

[-2.97e-01, 1.33e-02, -3.77e-04, 4.06e-03, -1.37e-05, 6.93e-
03, -3.98e-05, -2.63e-04, -7.58e-05, 3.95e-07, 2.22e-07, -
1.16e-09, 5.11e-04, -2.65e-06, -2.84e-06, 1.48e-08, -2.18e-
06, 1.24e-08, 2.55e-06, -4.50e-09]

Θ(85◦ . . . 90◦) =

[-5.00e+00, -5.68e-02, 4.72e-05, 3.03e-03, -7.74e-06,
1.12e-01, -6.33e-04, -2.66e-04, -6.48e-05, 3.24e-07, 1.12e-
07, -5.37e-10, 2.27e-03, -1.45e-05, -1.31e-05, 8.37e-08, -
2.81e-06, 1.59e-08, 3.07e-06, -5.47e-09]

Θ(90◦ . . . 95◦) =

[6.90e+00, -1.64e-01, 4.18e-04, 2.97e-03, -7.22e-06, -
1.47e-01, 7.80e-04, -2.67e-04, -6.48e-05, 3.13e-07, 1.26e-
07, -5.27e-10, 4.44e-03, -2.17e-05, -2.39e-05, 1.17e-07, -
3.01e-06, 1.69e-08, 3.08e-06, -5.50e-09]

Θ(0◦ . . . 6◦) = [3.47e+00, -1.48e-06]

Θ(174◦ . . . 180◦) = [2.37e+00, -3.01e-06]
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