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Abstract— Within the realm of satellite remote sensing, opti-
mal data acquisition to study natural phenomena under time,
resource, and cost constraints is a well-known problem. Fur-
thermore, since the sensors themselves are at remote locations
with sparse ground connectivity, the optimal method must use
a computationally light forecasting algorithm, which assimilates
information from the observations at possibly irregular intervals,
in near real time. In this article, we propose and demonstrate the
ensemble -guided cyclone track forecasting (EGCTF) method for
application in remote tropical cyclone tracking. The algorithm
uses ensemble data produced by numerical weather prediction
models to guide the forecasting process while assimilating mea-
sured cyclone center positions. The algorithm was tested and
analyzed with the Global Ensemble Forecasting System (GEFS)
data and the National Hurricane Center data for the 2018 year
hurricanes within the Atlantic basin. Compared with a baseline
method that uses the GEFS-issued mean ensemble track (AEMN)
for forecasting and no data assimilation, the proposed algorithm
exhibited positive forecast skill for more than 290 test cases over
forecast periods spanning 6–48 h. The skill is seen to improve
with lengthening forecast periods, with five test cases showing
greater than 75% skill for a forecast period of 6 h to 247 test
cases for the forecast period of 48 h.

Index Terms— Forecasting, optimization, remote sensing, satel-
lite constellations, tropical cyclones (TCs).

I. INTRODUCTION

SATELLITE-based remote sensing has enabled new discov-
eries and increased our knowledge of natural phenomena

governing our planet. Large amounts of data containing spec-
tral information of our planet are downloaded and analyzed
daily for widespread scientific use. In particular, predictive
models are able to assimilate these data sets to increase
their accuracy and prediction capabilities regarding highly
impactful phenomena, such as tropical cyclones (TCs), floods,
and wildfires.

While traditional Earth observation (EO) satellites have
been massive, expensive, and monolithic in nature, over the
past decade, there has been significant growth of small-sized
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satellite systems demonstrating meaningful scientific appli-
cations. For example, the Cyclone Global Navigation Satel-
lite System (CYGNSS) constellation of eight microsatellites
launched in December 2016 weighs only 24.7 kg each and
operates at a power budget of 38 W while measuring GPS
signals reflected from the Earth’s surface [1]. When CYGNSS
data were assimilated into a research version of the hurricane
weather research and forecasting (HWRF) model, a numerical
weather prediction (NWP) model, improved track, intensity,
and structure forecasts for hurricanes Harvey and Irma (2017)
were made [2]. RainCube demonstrated an active miniaturized
Ka-band precipitation profiling radar [3] and TEMPEST-D
demonstrated a millimeter-wave radiometer measuring five
frequencies [4], both in a 6U Cubesat form factor (launched
May 2018). Thyphoon Trami (2018) was co-observed by both
RainCube and TEMPEST-D to yield horizontal and vertical
profiles of the typhoon [3]. Since small satellite platforms have
demonstrated useful scientific data gathering, the next step is in
commissioning of large-scale constellation missions with small
satellites. Efforts in this field have already been started with the
CYGNSS [1], Temporal Experiment for Storms and Tropical
Systems (TEMPEST) [4], and Time-Resolved Observations of
Precipitation structure and storm Intensity with a Constellation
of Smallsats (TROPICS) missions. TROPICS is aimed at
providing microwave measurements of 3-D temperature and
humidity over the tropical region, as well as cloud ice and
precipitation horizontal structure with a constellation of six
3U Cubesats in three orbital planes [5].

While satellites can take advantage of larger geographical
scope and access to remote areas on Earth, they have to
operate under constraints of a tight power budget, limited
communication opportunities, bandwidth, and limited compu-
tational resources. This is especially restrictive for the case of
small-sized EO satellites. Low Earth orbit (LEO) satellites are
limited by access time over regions of interest and large gaps
between accesses over a given region much more than satel-
lites at higher orbits. Satellite-to-ground communications are
limited by the number and positions of available ground sta-
tions. For satellites operating with active radars, the instrument
duty cycle is limited by power and thermal considerations. For
an efficient allocation of resources, the satellite should ideally
focus its time and resources at making “interesting or useful”
observations, as opposed to the case where the satellite only
makes nominal observations that are filtered out later on the
ground to yield interesting/useful data. This is especially true
for the aforementioned radars or high-resolution imagers that
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can maneuver to a large field of regard but capture within a
small field of view [6]. Furthermore, since access to ground
control centers is limited, the decisions would ideally need to
be made autonomously onboard the satellite in scenarios when
the natural phenomena under observation (such as TCs) are
evolving at a rapid rate. For example, Nag et al. [7] described
a case study of a satellite constellation monitoring urban
floods with autonomous optimal scheduling and delay-tolerant
networking (DTN) protocol for intersatellite communications.

Autonomous satellite tasking of taking observations of high
priority events based on acquired and processed onboard
imagery was demonstrated by the Earth observation-1 (EO-1)
spacecraft (mass of 588 kg, launch November 2000) through
the autonomous sciencecraft experiment (ASE). Active vol-
cano eruptions were detected, prioritized, and observed [8].
The spacecraft detected flooded areas by finding the increase
in the water covered pixels from acquired images and
autonomously retasked the spacecraft to take additional scenes
(including those regions upstream or downstream along the
river to monitor the extent of the flooding) [9]. The data
collected by the satellite were filtered, and only the useful
data were downlinked to ground stations demonstrating huge
savings in downlink resources.

A fundamental component of the onboard decision-making
process would be for the satellite to learn and predict the nat-
ural phenomena, adapting its strategy based on its successive
observations and that of other satellites within the constella-
tion. Given that the computational resources on the satellite are
limited, the algorithm must be computationally lightweight.
In this article, we propose and investigate a new algorithm
guided by ensemble outputs of NWPs to predict the track of
TCs, by considering the prior ensemble prediction tracks of an
NWP and the history of observations. By predicting the future
positions of the TC, the satellites can dedicate its resources and
optimize its limited access time over the area of TC activity
to procure scientific measurements of higher value.

This article is arranged as follows. Section II describes
related research and highlights the challenges in their
application in autonomous onboard implementation.
Sections III and IV describe the proposed algorithm
and the results from the application of the algorithm for the
case of the 2018 year TCs in the Atlantic basin. Section V
concludes with a discussion.

II. RELATED WORK AND MOTIVATION

Roy and Kovordányi [10] provided an extensive review of
different TC forecasting techniques. The accounting of the
recent-past behavior of the current cyclone and/or the behavior
of previously encountered similar cyclones is common to all
forecasting techniques. The underlying models are based on
either physical governing equations of fluid motion (dynamical
models solved using numerical techniques also referred to as
NWP models), statistical models using historically recorded
data of TCs and the current TC (solved using regression,
artificial neural networks (ANNs), Markov chains, and so on),
or a hybrid of the above (statistical–dynamical models that use
predictors based on the execution of the dynamical models).

Dynamical model techniques have been shown to yield
increasingly accurate forecasts as evidenced in the National
Hurricane Center (NHC) report for the 2018 hurricane
season [11]. However, dynamical models have high com-
putational requirements and require execution on super-
computers to produce predictions within a reasonable time
frame. On the other hand, statistical models have relatively
low computational requirements but suffer from relatively
lower forecast accuracy [12]. There have been efforts in
employing machine learning on past data of TCs and/or
satellite images of the current TC to produce track fore-
casts at near real time. Kovordányi and Roy [13] showed
that the TC track direction can be determined based on
cloud patterns associated with the TC using neural net-
works applied to satellite images from the National Oceanic
and Atmospheric Administration (NOAA)—Advanced Very
High Resolution Radiometer (AVHRR) instrument aboard
NOAA’s polar-orbiting satellite. Rüttgers et al. [14] used gen-
erative adversarial networks (GANs) applied to geosynchro-
nous (GEO) satellite images and velocity fields, to produce a
6-h advance tracks for TCs. Moradi Kordmahalleh et al. [15]
used sparse recurrent neural networks (RNNs) with dynamic
time warping for predictions of hurricanes at 6- and 12-h time
frames from the current time of observation, using a database
of similar past hurricane trajectories.

Unfortunately, application of such forecasting techniques
onboard a satellite is not straightforward. Implementation of
an onboard dynamical model that directly assimilates the data
observed would be computationally prohibitive. Furthermore,
dynamical models require a wide range of inputs (such as
wind, precipitation, and temperature), which may not be
available to the satellite from its observations. For techniques
that use neural networks, predicted TC positions are produced
at fixed intervals from the current observation time and also
expect for the input data to be available at predefined temporal
intervals. This is typically available for GEO imagery since
GEO satellites have a fixed view of a large region of Earth,
and thus, images within this area can be potentially taken
at regularly cadenced intervals. For example, the Advanced
Baseline Imager (ABI) onboard the Geostationary Operational
Environmental Satellite-R (GOES-R) series of GEO satellites
possess a mesoscale operation mode in which coverage is
provided over a 1000 × 1000 km2 geographical area with
a temporal resolution of 30 s and a spatial resolution of
0.5–2 km [16]. LEO satellites, however, can make observa-
tions only at aperiodic intervals. Therefore, both the input
observation data and the output predictions are processed at
irregular time intervals.

With the aforementioned considerations, the requirements
of an onboard-satellite forecast algorithm can be outlined as
follows.

1) Must impose low computational load for the satellite
processor.

2) Able to accept information from observations at irregular
intervals and also be able to produce forecasts for
arbitrary times.

3) Limited dependence upon specific natural phenomena
attributes (such as temperature and precipitation) since
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these can only be measured by the satellite depending
on its type of payload(s).

4) In the case of satellite constellations, information sharing
between the satellites is critical; each satellite can take
advantage of observations by other satellites for the fore-
casting process. The communication bandwidth between
the satellites is, however, limited (16.6–293 kb/s depend-
ing on the intersatellite link (ISL) distances for low-cost
microsatellites as investigated in [17]), and hence, it is
desirable for the shared observation information to be
of small size. For example, transmitting the entire raw
image captured by a satellite to other satellites in the
constellation via ISL may be prohibitive compared with
transmitting few observation parameters (e.g., center,
velocity, and intensity of TC) derived from the raw
image.

5) Must be able to operate for long periods with no
intervention from ground stations (i.e., autonomously).
Ground-station resources are expensive and sparse. LEO
satellites have limited access to ground stations for peri-
ods ranging from 5 to 15 min with large gaps between
the subsequent revisits, depending on the satellite orbit,
number of ground stations, and location of the ground
stations. It is desirable to reduce the required amount of
data uplinked from the ground stations to the satellites
to efficiently utilize the satellite-ground contacts and
resources.

The above-outlined requirements motivated the investigation
of a methodology and algorithm that can be implemented
onboard satellite hardware. While this work concentrates on
the development of the algorithm toward a specific natural
phenomenon (TCs), the approach of utilizing ensemble mem-
ber track information for guidance is generic. While the direct
contribution of this work is the algorithm geared for forecast-
ing TC tracks, an indirect contribution is the demonstration of
the novel utilization of ensemble member track information
for the purpose of adaptive forecasting.

III. ALGORITHM

A. Background

The forecast made by NWP models suffers from two types
of error: initial conditions errors and inseparable model errors
[18]. To account for the uncertainties in the prediction process,
ensemble forecasting was established with the ultimate goal to
predict quantitatively the probability state of the atmosphere
at a future time [18]. A collection of predictions are made
for not just the best available estimate of the initial conditions
but also for perturbed version of the forecast (by sampling the
probability density function of the initial state via Monte Carlo
techniques and then evolving those perturbed states using a
weather model). The prediction produced from the original
forecast is known as the control member, and the predictions
from the perturbed versions are known as ensemble members.

The ensemble forecasts represent different possibilities at a
later time and hence a set of different, but possible predictions.
A simple mean of these possible predictions may be taken
to produce the ensemble mean forecast. Taking the concept

of the ensembles further, consensus predictions are produced
by taking a simple mean of forecasts from different weather
models or forming a superensemble [19], which uses past
performance of models to determine statistical weights that
may vary in both space and time.

The basic idea behind our proposed algorithm is to consider
the information from the recent observations (both successful
and unsuccessful) to determine which ensemble members are
closer to the true state of the dynamical system. The relative
importance of the ensemble members is expressed in the form
of weights and a linear-weighted average is taken to produce
a new forecast track. Extrapolation (after segmented linear
regression of raw noisy TC position measurements) of the
already observed TC track is carried out to produce a new
forecast.

B. Description

The proposed algorithm, termed Ensemble-Guided Cyclone
Track Forecast (EGCTF), is outlined in Algorithm 1 along
with the definition of the algorithm parameters, inputs, and
output. The various parts of the EGCTF algorithm are detailed
in the following.

1) Ensemble Tracks (Algorithm 1 Data): The ensemble
forecast data considered in this work come from the Global
Ensemble Forecast System (GEFS) [20], as obtained from
the Automated TC Forecast (ATCF) FTP website [21]. There
are 21 track forecasts considered: the control track member
“AC00” and the 20 ensemble members (perturbed from the
control member) “AP01”–“AP20.” An additional “AEMN”
mean ensemble track forecast is also present in the GEFS data,
which is the mean of all the ensemble members, with all the
members weighed equally. The forecasts are issued every 6 h
at UTC times 0, 6, 12, and 18 h. The resolution of the forecast
time steps is at 6-h time steps, varying from 0 h to a maximum
of 384 h. The corresponding “best-track” data [22] (track name
denoted as “BEST,” also at 6-h rate) is the best estimate
of the true path of the TC issued by the NHC, as obtained
from the ATCF FTP website. The TC track data used are
the forecast TC center positions in latitude and longitude
coordinates. The EGCTF algorithm entails the extrapolation
of prior estimated TC track using a displacement vector (see
Section III-B6), for which uniform measures of distances on
a plane are preferred. Therefore, we project the TC track
positions onto an XY plane using equidistant conic projection
with the two standard parallels placed at equal spacing over
the region of TC activity (and thus providing nearly uniform
distance measures). Fig. 1 shows the example ensemble and
best track plots corresponding to hurricane Florence 2018-
09-03 06-h UTC forecast for 24-h period on the XY plane
(projection parameters: parallel latitudes at 16.67◦N, 33.33◦N
and central meridian as 45◦W). A TC is said to be “captured”
successfully when the center of the TC is within the observed
area (sensor footprint).

a) Data size: The ensemble track data produced by
the NWP model need to be uplinked and synced with all
the satellites in a constellation and, therefore, should be of
modest size (see Section II). Assuming a 16-bit floating-point
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Algorithm 1 Ensemble Guided Cyclone Track Forecast
(EGCTF)
Data: Ensemble track forecasts from NWP

Prior ensemble weights
Prior raw TC center observation data
Prior failed observations data

Input : Forecast time: t f

Parameters: Subsegment length: Lsseg

Reward factor: r f

Threshold number of prior estimations: nth
etp

Output: Forecast TC center at time t f

1 Process prior raw TC center measurements to get
estimated TC center positions. Parameter used here is
Lsseg .

2 First guess (unnormalized) ensemble weights = Prior
ensemble weights.

3 repeat
4 Calculate mean ensemble track from ensemble track

data and ensemble weights.
5 Calculate cost , the average of distances of prior

estimated TC centers from mean ensemble track to
the set of all estimated TC center positions.

6 Update (unnormalized) ensemble weights according to
optimizer strategy.

7 until optimizer convergence;
8 Reward/ Penalize weights of ensemble tracks according

to distance of ensemble track from prior failed
observations using the reward factor r f .

9 Generate optimal mean ensemble track from the
ensemble weights.

10 if atleast nth
etp prior estimates are available then

11 Let the time, position of the immediate prior estimate
be {Xest(tp), Yest (tp)}.

12 Find TC displacement vector
−→
dp using the optical

mean ensemble track forecast at tp and t f .
13 Extrapolate prior estimate {Xest(tp), Yest (tp)} using the−→

dp to find forecast storm position at t f .
14 else
15 Calculate forecast at t f as the TC center position from

the optimal mean ensemble track only.
16 end

representation of the latitude/longitude values and track data
corresponding to a forecast duration of T hours, the amount of
data can be calculated as: T (h/6 h) × 21 ensembles × 2 (lat,
lon) × 16 (bits). For example, the track data corresponding to
48-h forecast period need a packet size of 672 bytes, without
overhead.

2) Processing of Raw TC Center Measurements (Algo-
rithm 1 Line 1): The satellite payload is expected to collect
spectral data of the TC. Preprocessing of these data onboard
the satellites involves calibration, geometric corrections to
enable mapping the image pixels to ground positions, and
feature extraction to learn about the current state of the
phenomenon. Such technologies have been demonstrated for

Fig. 1. Illustration of successful (sensor footprint on the right) and failed
(sensor footprint on the left) capture of TC observations for hurricane
Florence 2018, using a sensor with circular footprint of 50-km diameter,
as superimposed on the Akima interpolated ensemble tracks and the best
track. Note that the scales of the x- and y-axes are different and that the
different points on a track correspond to different times (timestamps shown
for one of the ensemble tracks). While two tracks in the 2-D plot may appear
to intersect, it may correspond to different times, and hence, in reality, there
may be no intersection.

sister applications. For example, the bispectral infrared detec-
tion (BIRD) small satellite [23] conducted autonomous feature
extraction and classification using a neural network processor.
The EO-1 spacecraft has demonstrated onboard generation
of the following analysis products: thermal classification and
summarization, flood classification, cryosphere classification,
quicklook imagery, sulfur detection, and hyperspectral data
analysis [24]. Field-programmable gate array (FPGA)-based
real-time onboard georeferencing has been proposed in [25].

The geographical position of the center of the TC needs
to be estimated from the gathered observation so that this
information can be assimilated into our proposed EGCTF
algorithm. Estimating TC center is a challenging problem, and
the solution is specific to the type of the payload/observation
data. Wimmers and Velden [26] described an algorithm to
automatically calculate the rotational center of TCs using
spirally oriented brightness temperature gradients in the TC
banding patterns, along with gradients along the ring-shaped
edge of a possible eye. Results are calibrated and validated
using 85–92-GHz passive satellite microwave imagery. In [27],
the above-mentioned algorithm was improved to consider
multisatellite data inputs: 37- and 85–92-GHz microwave
imagers; geostationary imagery at visible, near-infrared, and
longwave infrared window channels; and scatterometer ambi-
guities. Jaiswal and Kishtawal [28] demonstrated automatic
center determination with image processing techniques applied
to satellite infrared images.

In this work, we assume the availability of the TC cen-
ter position after an observation resulting in an successful
TC capture has been made, henceforth called the “raw”
storm center measurement, denoted by the coordinate pair
{X raw(t), Yraw(t)}. In a practical scenario, the raw TC cen-
ter value is not accurate and would possess an associated
uncertainty. To improve the estimate of the center position,
we consider multiple raw measurements (at different times)
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Fig. 2. Illustration of the segmented regression method to process the raw
TC center measurements to estimated TC centers at the midpoint of the
subsegment regression line. Note that while the length (in time dimension)
of the subsegments (Lsseg) is fixed, the length of the segment is variable and
depends on the time sequence of the available raw-measurement.

and form a single “estimated” TC center using the method of
segmented regression shown in Fig. 2. A set of observations
with no (time) gaps larger than Gseg is defined as a curve
segment and divided into line subsegments of predefined
length Lsseg (with Gseg = Lsseg). While the parameter Lsseg is
used to approximate the TC path as a set of line subsegments,
the Gseg parameter tells the maximum period of absence
of data after which a line subsegment cannot be built (and
hence, a new curve segment needs to start). Note that the last
subsegment is defined with respect to the end of the segment.
Within each subsegment of length Lsseg, a least mean square
linear regression is performed. The midpoint (in time) of the
subsegment is defined by the TC center, as estimated from
the set of raw TC center measurements of the corresponding
subsegment. In case only one raw measurement is available
for a subsegment, this measurement is considered to be the
estimated TC center. The selection of the parameter Lsseg

depends on the time over which the TC progress is expected
to be linear, which can either be objectively decided based
on prior knowledge of the TC path from a study of past
similar TCs or by running regional forecast models at a higher
temporal resolution or by making a conservative guess, and
the noise level of the raw measurements as described in
Section IV. The estimated TC center positions at time t are
henceforth denoted by the coordinate pair: {Xest(t), Yest(t)}.

The abovementioned methodology of segmentation and
regression allow for the collation of a dense set of raw TC
measurements to obtain a single, more accurate estimation of
the TC center. In the case of agile LEO satellites, the pass
duration over a small region of interest (such as the region
of TC activity) is on the order of 5–15 min, depending on
the altitude of the satellite and the maneuverability of the
satellite. Several captures are possible over a single satellite
pass, which can be collated as described. Furthermore, in the

case of multiple satellites in a single orbital plane (such as
in the CYGNSS mission [1]), several successive observations
are made by the system of satellites, which can be collated to
more accurate estimates.

3) Mean Ensemble Track Calculation [Algorithm 1 (Line
4)]: The mean ensemble track is simply the linear-weighted
average of all the ensemble track forecasts

{X̄ens(t), Ȳens(t)} = {�iw
i X i

ens(t),�i w
i Y i

ens(t)} (1)

where {X̄ens(t), Ȳens(t)} are the Cartesian coordinates of the
mean ensemble track at time t , {Xi

ens(t), Y i
ens(t)} are the

coordinates of the i th ensemble track at time t , and wi is
the weight associated with the i th ensemble track such that
�iwi = 1 and wi ≥ 0.

Since the ensemble forecast data are available at 6-h inter-
vals, the Akima interpolation scheme [29] is applied to obtain
TC positions at intermediate times. The Akima interpolation
performs piecewise interpolation using third-order polynomi-
als and yields smooth, natural curves through a set of data
points. It is used by the NHC to interpolate 12-h best-track
data to 6-h intervals [21, NRL_doc_ATCFdatabase.html] [30].
Furthermore, Jarvinen et al. [31] reported that the Akima
polynomial interpolation gave highly satisfactory results when
applied for best-track interpolation from 12- to 6-h intervals,
thus making it a favorable interpolation method for the EGCTF
algorithm.

4) Optimization of the Ensemble Weights From Set of Esti-
mated Past TC Centers [Algorithm 1 (Line 3–7)]: The core
of the EGCTF algorithm is the optimization performed to
yield a set of optimal ensemble track weights under the
constraints of partial information regarding the TC track. The
mean ensemble given in (1) is a linear combination of the
ensemble tracks. In practice, some ensemble forecasts would
be closer to the truth, and by assigning a higher weight to
those ensemble forecasts, we can get the corresponding mean
ensemble forecast as a better overall forecast.

At the beginning of the forecast period, all the ensemble
members are given equal weights and the mean ensemble track
calculated would be the same as that of the “AEMN” track
in the GEFS forecast data. As observations are made around
the area of the TC, information about the presence/absence
(identification) of the TC, along with measured (noisy) TC
center positions (in case of successful TC captures), is utilized
to determine which ensemble members are the better forecasts.
The “true” optimal ensemble track can be defined as the
linear-weighted average of the ensemble tracks that are closest
to the true track (calculation of the true optimal ensemble
track would require knowledge of the true track at all times)
in terms of the least mean of distances over all times [see
the cost function in (2)]. The goal of the optimization portion
of the EGCTF algorithm is to converge to the “true” optimal
ensemble track using the set of the partial and noisy true track
position estimates.

Mathematically, this is framed as an optimization problem
with the following attributes.

a) Optimization parameters: The optimization para-
meters are the unnormalized ensemble member weights
{w1

ens, w
2
ens, . . . ., w

21
ens}. The use of unnormalized weights as
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the parameters avoids imposition of the normalization con-
straint, i.e., {∑i wi

ens = 1} on the optimizer.
b) Cost function: The cost function utilizes the history of

all the successful TC captures (and hence the raw TC center
measurements) as follows:
cost

= 1

J

∑
∀ j

√
(X̄ens(t j)− Xest(t j))2 + (Ȳens(t j )− Yest(t j ))

2 (2)

where cost is the average of the distances between the mean
ensemble track and the estimated prior TC center positions, j
corresponds to the j th prior TC estimation, and J is the total
number of prior estimated storm center positions.

c) Optimizer method: The optimizer used is the limited
memory Broyden–Fletcher–Goldfarb–Shanno with Boundaries
(L-BFGS-B) algorithm [32], a popular quasi-Newton method
that allows the user to specify the amount of storage required
by L-BFGS-B using a parameter to determine the number of
BFGS corrections saved. It also allows for the setting of simple
box bounds on some or all of the optimization parameters. The
quasi-Newton property and the limited memory property make
this optimization method suitable for real-time implementation
onboard satellites. The following lower and upper bounds are
set for all the optimization parameters (ensemble weights)

0.005
1

Nens
≤ wi

ens ≤ 1, where Nens is the total number of

ensemble members. A lower bound of zero is avoided and is
set to 0.5% for which the reason is explained in Section III-
B5. Since the result of the optimizer is the set of optimal
unnormalized ensemble weights, a final normalization step is
performed after the optimizer has converged as follows:

wk
ens ←− wk

ens/
∑

i

wi
ens (3)

where ←− denotes the update operation.
5) Reward/Penalize Ensemble Tracks Based on Failed

Observations [Algorithm 1 (Lines 8 and 9)]: We also use
the set of failed observations in the process of the finding
the optimal mean ensemble track. In the event, the TC is not
captured by a sensor observation, the ensemble tracks further
away from the observation position are rewarded by a (reward)
factor r f (units: [per unit distance]), thus effectively penalizing
the ensembles close to the failed observation point. This is
carried out as follows:

x = ||pi
ens(t)− pobs(t)|| (4)

wi
ens ←− exp (r f x)wi

ens (5)

where || . . . || is the vector norm, pi
ens(t) is the i th ensemble

track forecast position vector, and pobs(t) is the observation
position vector of the failed observation at time t . This step is
carried out for the set of all failed observations and is followed
by normalization of the set of ensemble weights. The ensemble
mean track constructed from these weights is here referred to
as the optimal mean ensemble track.

Equation (5) indicates multiplication with the prior ensem-
ble weight. In a scenario where the prior weight is 0, the
reward functionality fails. Hence, it is desired that the ensem-
ble weights from the optimization step [see (3)] have a nonzero

Fig. 3. Illustration of the TC track extrapolation procedure using estimated
TC centers at previous timestamps and the optimal mean ensemble track.
Those from linear extrapolation with the results are compared. For simplicity,
the time trajectory of only the X-coordinate of the TC center is shown.

value. Therefore, the selection of a small positive lower bound
in the optimizer variables is described in Section III-B4.

6) Extrapolation of Estimated TC Track [Algorithm 1 (Lines
10–16)]: In an ideal scenario, a large number of ensemble
track forecasts would be available such that at least one may
potentially be close to the true track. Applying the above
ensemble weight optimization would result in a weight ≈1 for
that ensemble track, whereas for the other ensemble tracks,
their weights would be ≈0. Producing a large number of
ensembles places computational load on the parent NWP
model and also on the optimization algorithm since the number
of optimization parameters increases. Practically, since the
number of available ensemble tracks is limited, the true track
may not be expressed as a linear combination of the ensemble
tracks. Thus, determining an optimal mean ensemble track by
itself is not sufficient for forecasting.

When there are available TC center estimations, one
approach is to simply extrapolate linearly the estimated TC
track to the forecast time. However, since the TC track is
unlikely to be linear, the linear extrapolation would lead to
errors whose magnitude depends on: 1) extrapolation time and
2) curvature of the TC track. Therefore, instead of a linear
extrapolation, we extrapolate the immediate prior TC center
estimate ({Xest(tp), Yest(tp)}) using the displacement vector
derived from the optimal mean ensemble track as follows:

−→
dp = {X̄ens(t f )− X̄ens(tp), Ȳens(t f )− Ȳens(tp)} (6)

where tp is the time stamp corresponding to the immediate
prior TC center estimate, t f is the forecast time, and

−→
dp is the

displacement vector.
Finally, the forecast is calculated by the following vector

addition:
{X f (t f ), Y f (t f )} = {Xest(tp), Yest(tp)} + −→dp. (7)

Fig. 3 shows the abovementioned concept. The extrapolation
is carried out subject to the condition that a minimum number
of prior estimated positions (nth

etp) are available (see Algorithm
1, Line 10). This condition ensures that the corresponding
optimal mean ensemble remains close to the true optimal mean
ensemble track. In the absence of a minimum number of prior
estimated positions, the forecast at time t f is calculated from
interpolation of the optimal mean ensemble track.
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Fig. 4. Testing framework of the proposed EGCTF algorithm (see Algorithm
1). The algorithm under test is placed in loop with the “True Track Simulator”
and “Measured TC center Simulator.” The test is iterated sequentially over the
vector of observation time steps, and the EGCTF algorithm issues forecasts
(observation points) for future times while assimilating the results from all
previous observations.

IV. TESTS AND RESULTS

A. Framework

The testing framework of the proposed EGCTF algorithm
is shown in Fig. 4. The algorithm is initialized with the NWP
model ensemble track information corresponding to the TC
of interest and parameters that remain constant for a test case.
A vector of observation times by a coordinated sensor network
(such as a constellation of satellites) is assumed and iterated
upon. It should be noted that the forecast at a time tn is issued
immediately after the observation at time tn−1 has been made
and assimilated by the EGCTF algorithm. The sensor footprint
is assumed to be circular with radius Rsfp.

The output of the EGCTF algorithm is the predicted storm
center position at the requested forecast time that is set to equal
the command observation position (pobs = {X f (t f ), Y f (t f )})
by the satellite. The “True Track Simulator, Measured TC
center Simulator” block uses the 6-h best track data (obtained
from NHC [21]), interpolates it using the Akima method, and

treats it as the true track. The position of the TC at time t f

given as pTC is compared with pobs. If pTC falls within the
sensor footprint, the storm is said to be captured successfully
and a raw storm center measurement is calculated as a sample
from a bivariate normal distribution with mean pTC and a
covariance σ 2. For a circular sensor footprint of radius Rsfp,
this condition can be written as

||pobs − pTC|| < Rsfp 	⇒ {X raw, Yraw} ∼ N(pTC, σ 2).

This raw measurement is appended to the list containing pre-
viously recorded raw measurements. On the other hand, if the
storm capture fails, pobs is appended to the list containing the
previously recorded failed storm capture observation positions.
The updated lists are used for the subsequent iteration of the
simulation.

B. Test Metrics

There are three metrics used to evaluate the predictive
effectiveness of the algorithm.

1) Distance Error Between the Forecast TC Centers (Obser-
vation Points) and the Actual TC Center at the Time of
Observation: The distance from the forecast TC center to the
actual TC center gives an absolute measure of the algorithms’
performance. This metric is similar to the track forecast error
term used by the NHC [11, p. 4], the difference being that the
NHC forecast error utilizes great circle distances and distance
error here is measured in the 2-D projection plane in which
the EGCTF algorithm operates. While it may be argued that
considering the great circle distances is a better objective mea-
sure, distances in the projection plane are appropriate for this
work since the EGCTF algorithm, and hence the optimization
involving minimization of the distance errors (cost), operates
in this plane, we would like to test the optimization trend
with the defined cost term and are mainly concerned with the
relative performance with respect to a baseline forecast model,
and both are computed in the same frame.

The distance error (de) metric is defined as

de = ||pobs − pTC||. (8)

A corresponding average distance error (d̄e) over all the
observations made during the course of the simulation is
defined as follows:

d̄e = 1/Nobs

∑
Nobs

de (9)

where Nobs is the total number of observations over the course
of the simulation.

2) Skill With Respect to a Baseline Forecast Algorithm:
In keeping with the forecast skill metric defined by the NHC
in [11, p. 4], a skill term s is defined as follows to describe
the percentage improvement of the EGCTF forecasts over the
baseline forecasts:

s = 100
(d̄e|base − d̄e|EGCTF)

d̄e|base
(10)

where d̄e|base is the average distance error yielded by the base-
line forecast algorithm and d̄e|EGCTF is the average distance
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error yielded by the EGCTF algorithm for the same simulation
scenario. Note that for de|EGCTF < de|base, s is positive, and
when d̄e|EGCTF = 0, s = 100%.

The baseline TC forecast referenced here is the AEMN
track from the GEFS forecast. The AEMN track is the mean
ensemble track with all the ensembles weighted equally. In the
absence of the EGCTF algorithm and data assimilation from
observations, one may determine the forecasts (and hence the
observation positions) from the AEMN track.

3) Total Number of Successful TC Captures at the End of the
Simulation Period: The error metrics defined earlier do not dif-
ferentiate between successful observations (i.e., observations
in which the TC center is captured) and failed observations.
Hence, we consider a third metric—defined simply as the
count of successful observations of TC captures over the entire
simulation duration.

C. Test Data and Parameters

1) Track Data: As described in Section III-B, the 21 ensem-
ble members of the GEFS forecasts and the best-track data
from NHC were utilized for this work. All TC activity over the
Atlantic basin in the year 2018 (16 hurricanes from Alberto
to Oscar) was considered. The test simulation period is set
to 48 h, and hence, the first 48 h of GEFS forecast track
data was used. Some forecasts were disregarded because they
did not extend to 48 h and/or some ensemble members were
missing. In total, 318 track forecast data and corresponding
best-track data were collected. Of these, five were selected to
illustrate the behavior of the algorithm at different conditions
(observation frequencies and sensor noise). The name of the
hurricane and the corresponding forecast epoch time for each
of the selected five tracks is listed follows.

TF1: Hurricane Alberto 2018-05-27 06-h UTC.
TF2: Hurricane Florence 2018-09-03 12-h UTC.
TF3: Hurricane Florence 2018-09-08 18-h UTC.
TF4: Hurricane Kirk 2018-09-26 12-h UTC.
TF5: Hurricane Leslie 2018-10-05 18-h UTC.

2) Nominal Values: The nominal values for the algorithm
parameters for all the test cases are as follows: Lsseg = 1 h,
r f = 1e−6/m and nth

etp = 5. The nominal sensor footprint radius
was considered to be circular with a diameter of 100 km. The
typical diameter of the TC-eye ranges from 30 to 65 km,
and the 100-km value was chosen to allow enough buffer
to observe sufficient features needed for detecting the TC
center. Since all TCs considered were in the Atlantic basin,
the following conic equidistant projection parameters are used:
parallel latitudes at 16.67◦N, 33.33◦N and central meridian
as 45◦W. In practice, when implementing the algorithm for
a single TC, the projection parameters may be chosen to
minimize the distortions over the region of that particular TC
activity. The simulation period is set to 48 h, and the nominal
TC center measurement noise covariance matrix is assumed
to be diagonal with entries (10 km)2.

3) Observation Timing Vectors: These vectors contain the
times at which the observations are to be made. The test
procedures are performed for two types of observation timing
vectors.

Fig. 5. Simulated observation times available to a Walker-type constellation
of satellites (three planes, eight satellites per plane, and orbital plane inclina-
tion = 30◦), with varying gaps of 15 min, 1 h, and 5 h. One observation is
assumed to be made at each satellite pass over the region of TC activity.

1) Observation Times at Uniformly Spaced but Varying
Gap Periods: These are defined in terms of observation
frequency, starting with values of 2/h up-to 50/h in
increments of 2/h. The first observation starts at 0.5 h
from the ensemble track epoch to account for a possible
delay in syncing the sensor network with the NWP
model-generated ensemble track forecast.

2) Observation Times Derived From Orbital Simulation of
a Constellation of LEO Satellites Imaging Over the
Atlantic Basin: We considered a Walker constellation
[33] with three planes and eight satellites per plane,
an altitude of 550 km, and an orbital inclination of
30◦. The satellites’ field of regards are assumed to be
120◦ (i.e., the satellite has potential access inside a
conical region of (full) cone angle 120◦, within which
observations can be made). A single observation is
deemed to be made during each satellite pass over the
region of TC activity. Fig. 5 shows the observation
times available to such a constellation—clustered with
the variable spacing of about 15 min, 1 h, and 5 h.
A cluster of observation times corresponds to a set
of 15 observations with roughly 15-min spacing, indi-
cating continuous observation by satellites in two of the
three orbital planes. There are a few cases during which
more than one satellite has access to the region at the
same time, and we simplify such cases by assuming only
one effective observation. A total of 161 observation
times are present over a 48-h window.

D. Results

The test simulations were run for different algorithm para-
meters, observation frequencies, and sensor noise levels. The
results of testing are presented in Sections IV-D1–IV-D7,
starting with a nominal test and its sensitivity to a few
critical parameters (1–3), followed by overall behavior of test
metrics and the effect of various algorithmic nuances on these
metrics (4–7).

1) Complete Result Description for One Forecast: In this
test scenario, the GEFS ensemble forecast of Hurricane
Alberto at 2018-05-27 06 h (TF1) is run with the algo-
rithm parameters at their nominal values (see Section IV-C).
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Fig. 6. Simulation results for the GEFS ensemble forecasts of Hurricane
Alberto at 2018-05-27 06 h (TF1). The observation timing vector corresponds
to access opportunities derived by simulating an LEO Walker satellite con-
stellation. The EGCTF algorithm parameters and the simulation parameters
are set to the nominal values (see Section IV-C). Application of the EGCTF
algorithm resulted in a skill of 88.60%; 100% of TC centers were captured
compared with 69% by the baseline method. (a) Akima interpolated ensemble
and best (true) tracks. (b) Illustration of the observed positions and the
estimated positions with respect to the best track and the AEMN track. All
the observations yielded successful TC center captures. (c) Comparison of the
de error metric for the baseline AEMN forecast and the EGCTF forecast.

The observation times are that of the simulated LEO satellite
constellation (see Section IV-C). The selected ensemble fore-
cast corresponds to the one issued for Hurricane Alberto at

Fig. 7. Average distance error d̄e as a function of observation frequency
for parameters at the nominal values for the five-track forecasts (TF1–
TF5) (see Section IV-C). The error is dependent on the track forecast and
decreases with an increase in observation frequency. At frequencies higher
than 20 observations per hour, the decrease in the error is seen to be marginal,
signaling diminishing returns.

2018-05-27 06 h. While the AEMN forecast resulted in d̄e =
41.4 km and 111 successful observations (69%), the EGCTF
forecasting method resulted in d̄e = 5.4 km and 161 successful
observations (100%) and, therefore, a skill of s = 88.60%.
Fig. 6 shows the results of the simulation. Both the observed
positions and the estimated TC center positions are shown for
the entire time period. The effect of segmented regression in
producing more accurate estimates of the TC center positions
is illustrated in the zoomed-in inner figure in Fig. 6(b)—the
observation positions (green) yielded by the EGCTF algorithm
can be seen centered around the best track (black). The
observation positions yielded by using the AEMN track as the
forecast method (not shown in the figure for purpose of clarity)
would be along the purple AEMN track and can be seen to
be relatively inaccurate. The effect of the long observation
gap after 5 and 28 h can be seen in the form of large de for
the observations made after these gaps. However, the large
error is short-lived and the information from each of these
observations is used to correct the subsequent observations,
leading to lower error thereafter.

Appendix V contains the results for the remaining track
forecast cases TF2–TF5, with the parameters set at nominal
values, and for the observation times corresponding to a
constellation of LEO satellites.

2) Sensitivity to Observation Frequencies: In this test sce-
nario, the forecast/observation error d̄e at different observa-
tion frequencies (observation times with uniform gaps) was
investigated for the test cases of TF1–TF5, and the results are
shown in Fig. 7. All the parameters are set to nominal values,
as described in Section IV-C, and the observation frequency
is varied from 2 to 50 observations per hour in increments
of two observations per hour. As expected, the forecast error
exhibits a general downward trend as the observation fre-
quency increases since more frequent assimilation takes place.
While the decrease in the forecast error is more evident going
from two observations per hour to 20 observation per hour, it is
marginal at higher observation frequencies. This indicates the
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Fig. 8. Forecast/observation error as a function of TC center measurement
noise covariance for test simulation TF1. All other nominal parameters are
used. The observation vector was set to a uniform observation rate of 5/h. Error
increases with noise as expected. The behavior with respect to variation in
Lsseg depends on the noise level. For small noise covariance, increasing Lsseg
results in increase in the error, whereas for large noise covariance, increasing
Lsseg decreases the error. (a) d̄e as a function of noise covariance of the TC
center measurements for three sets of Lsseg. (b) d̄e as a function of Lsseg for
four sets of noise covariances.

limitation of the EGCTF algorithm, which uses only measures
of the observed TC center positions for the assimilation and
does not consider other TC attributes. Furthermore, for a given
observation frequency, different tracks exhibit different errors,
which can be attributed to the quality of the ensemble track
forecasts. By visually inspecting the ensemble plots and best
track plots of TF1 shown in Fig. 6 and of TF2–TF5 in Fig. 15,
it is possible to get a sense of the relative quality of the
ensemble forecasts and map it back to the relative errors
between the different track forecast simulations in Fig. 7.

3) Sensitivity to TC Center Measurement Noise Covariance:
In this test scenario, we investigate the performance of the
EGCTF algorithm for different magnitudes of noise covari-
ance of the TC center measurement (raw observations) and
subsegment length Lsseg. Fig. 8 shows the results for the TF1
scenario where the EGCTF algorithm is run with the set of
nominal parameters (variables being the noise covariance and
Lsseg). A uniform observation frequency of five observations

per hour is chosen to be representative of observations by an
imminently implementable satellite constellation. The noise
covariance was varied from (0.5 km)2 to (30 km)2, while
Lsseg was varied from 0.5 to 3 h. With the value of Lsseg as
0.5 h (and hence Gseg = 0.5 h), and the observation frequency
as five observations per hour, note that the tests involved
building one continuous curve segment in all the cases (see
Fig. 2). As expected, the error increases with increase in noise
magnitude (and hence decreasing quality of the observations
being assimilated [see Fig. 8(a)]).

The behavior with respect to Lsseg on the other hand exhibits
a strong dependence on the underlying noise covariance con-
sidered in the simulation, per Fig. 8(b). The error increases
with increasing Lsseg for small noise covariance, whereas the
error is seen to decrease for large noise covariance. With the
observation frequency fixed, the number of observations that
are collated to form the single TC center estimate depends
on the length of subsegment Lsseg. While a larger number
of collated observations from large Lsseg allow for a more
accurate estimate, there are three drawbacks on using large
Lsseg, which increases error.

1) The TC may not take a linear path over the Lsseg length
of time, and in general, the linear segment approximation
of the TC path loses accuracy with increasing lengths.

2) There is a reduction of the number of estimates made
and the estimates are further spaced apart from each
other, thus effectively lowering the resolution at which
the prior track is estimated.

3) Since the extrapolation is carried out from the immediate
prior estimate which is at the center of the subsegment
to the forecast time, the extrapolation is made over a
longer time for increasing subsegment length. A shorter
extrapolation time is desired for more accurate forecasts.

Furthermore, from Fig. 8(a), the following observations can
be made comparing the three colored plot lines correspond-
ing to different values of Lsseg. At lower noise conditions
(<160 km2), there is little benefit of using larger subsegment
lengths (Lsseg) for estimation. The drawbacks of using larger
Lsseg outweigh the benefits leading to larger errors. The error
plot lines cross each other at the circles marked in yellow,
indicating that for noise covariances higher than those, a higher
Lsseg exhibits lower error and is hence desirable. For example,
for noise covariances greater than 160 km2, Lsseg of 2 h
exhibits lower error than that of Lsseg of 1 h.

4) Average Behavior Over All Forecasts: In this scenario,
the forecast error for all 318 track forecasts (GEFS ensemble
members and NHC best tracks) for the 2018 year hurricanes
in the Atlantic basin was evaluated. The relative performance
with respect to the chosen baseline method (using forecasts
from the AEMN track) is presented. All the parameters are at
nominal values and the observation times are derived from
the LEO satellite constellation described in Section IV-C.
Fig. 9 shows the histogram of the skill [defined in (10)] and
comparison of the percentage of successful TC captures made
using the EGCTF versus AEMN forecasts. Of the 318 track
forecasts and test cases, the EGCTF algorithm exhibits better
performance in terms of the defined skill for 303 cases. In 247
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Fig. 9. Histograms illustrating the results of the 318 test cases utilizing
the 318 GEFS ensemble track forecasts of the 2018 hurricane season in the
Atlantic basin. Nominal set of parameters was used, and the observation times
were derived from the observation opportunities available to an LEO satellite
constellation (see Section IV-C). The EGCTF exhibits better skill and a larger
number of successful TC captures, compared to using AEMN forecasts.
(a) Histogram of forecast skill of the EGCTF algorithm, i.e., improvement
over the baseline forecast from AEMN tracks. (b) Comparison of the number
of successful TC captures over the entire simulation period of 48 h using the
EGCTF versus AEMN forecasts.

cases (over three quarters of the total number of test cases),
the performance of the EGCTF algorithm exhibits skill greater
than 75%. In a total of 161 observation opportunities available
in the observation times vector, the EGCTF algorithm was able
to capture the TC in over 90% of the opportunities for 271 test
cases (last two green bars). The baseline method could capture
over 90% of the opportunities in only 47 test cases (last two
purple bars). Furthermore, only in 7 of 318 test cases does the
baseline method outperform the EGCTF forecast in terms of
the number of successful TC captures.

While Fig. 9 confirms that the EGCTF generally performs
better than the baseline, we also investigated the cases where
the EGCTF algorithm underperforms. Fig. 10 shows one such
test case where the skill was negative (s = −4.36%). It dis-
cerned from the ensemble tracks and best track plots that the
GEFS ensemble member forecasts are poor predictions of the
TC track. The high initial error of the NWP model predictions
is visible in the form of the ensemble tracks starting at a

Fig. 10. Illustration of the track, observed positions, and estimated TC center
positions of test cases where the EGCTF algorithm underperforms, resulting
in no successful captures and no estimated TC center positions. (a) 3-D plot
of tracks and observation positions, with time on the vertical axis (ensemble
tracks are not included for clarity). (b) 2-D plot of tracks and observation
positions.

location relatively far away from the actual TC (compared with
the closeness of the ensemble and best tracks in Figs. 6(a) and
15). The sequence of observation positions appears to oscillate
around the AEMN track (searching for the true track) because
the EGCTF algorithm rewards ensembles predictions that are
farther away from the failed observation point. However, the
true TC being far out, no successful captures were made
during the course of observations, therefore the relatively poor
performance.

5) Effect of Utilizing the Optimal Ensemble Track Dis-
placements for Extrapolation: The optimal ensemble track
displacements from the time of issue of the forecast to the
forecast timestamp are utilized in the extrapolation section of
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Fig. 11. Comparison of results from EGCTF test runs using displacement
vectors from the optimal ensemble track for forecasts using extrapolation
versus a modified version of the EGCTF algorithm using linear extrapolation.
All the parameters are set to the nominal values (see Section IV-C). The
observation timing vector corresponds to a uniform observation rate of five
observations per hour. The native EGCTF algorithm resulted in lower forecast
errors (d̄e).

the EGCTF algorithm, as described in Section III-B. In this
test scenario, we compare the resulting forecast errors of the
test conducted with the EGCTF algorithm versus the test
conducted with a modified version of the EGCTF algorithm,
which uses linear extrapolation of the prior observed TC
center positions. The tests were conducted for track fore-
casts TF1–TF5 using the nominal set of parameters given
in Section IV-C. As seen in Fig. 11, the errors of the tests
that used the modified version of the EGCTF (with linear
extrapolation) are relatively higher (by at least 25%). This
demonstrates the effectiveness of using guidance from the
optimal ensemble track for extrapolation.

6) Effect of Taking Failed Observations Into Consideration:
To show the effect of including information from the failed
observations in the form of an exponential rewarding function
(which uses the distance between the failed observation point
and the ensemble member forecast as input) and the selection
of the reward factor r f parameter, the EGCTF algorithm was
run on an example case for different values of r f , and all other
parameters kept at their nominal values (see Section IV-C).
The observation times are that of the simulated LEO satellite
constellation (see Section IV-C). Fig. 12 shows the results of
this test scenario on the track forecasts of hurricane Florence
(epoch: 2018-09-12 18 h).

A r f = 0 (lower bound) implies multiplication of the
ensemble weights by unity, and hence, effectively, the failed
observations are not taken into consideration. In Fig. 12(a),
it can be seen that the optimization algorithm converges to
the peripheral ensemble track member (marked “A,” far from
the true track) due to the set of successful TC captures made
initially and continues to favor that track for the rest of the
simulation period.

An upper bound can be set on r f depending on the
maximum spread of the ensemble set. In an extreme case,
a failed observation can happen near the peripheral track of

Fig. 12. Comparison of results of test simulations with EGCTF with
different values of the reward factor r f . All other algorithm parameters
are set to the nominal values (see Section IV-C). The ensemble track
forecasts and the best track corresponds to hurricane Florence at epoch of
2018-09-12 18 h and a simulation duration of 48 h. (a) r f = 0E6/m.
(b) r f = 1E − 6/m (nominal value used in the tests). (c) r f = 100E − 6/m.
(d) r f = 1000E − 6/m.
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an ensemble set. The ensemble track farthest away from the
failed observation (at the other end of the periphery) shall
be weighted by a large factor: exp (rfmaxxmax), where xmax is
the maximum expected distance between a failed observation
and an ensemble track and r f max is the maximum reward
factor that can be used. The term exp (rfmaxxmax) should
be less than the overflow trigger value (depending on the
underlying processing system). For example, if the processor
uses the IEEE 745 32-bit floating-point representation, then
rfmax = loge(3.4E38)/xmax. xmax = 100E3 m gives rfmax =
887.2E − 6/m. The xmax term can be determined from the set
of ensemble tracks.

In Fig. 12(b), the rewarding of ensemble members far from
the failed observation point steers the course of observations
gradually toward the true track. In general, the reward factor
causes oscillations about the previous optimal mean ensemble
track as can be seen in Fig. 10, where there are no successful
observations, and the series of failed observations results in
the algorithm searching for the TC about the mean ensemble
track. The sensitivity to increasing magnitudes of r f is shown
in Fig. 12. The amplitude and frequency of the oscillations
increase with the magnitude of r f as expected. While a
large reward factor (r f = 1000E − 6/m) results in a better
performance, the selection of a small r f is a more conservative
choice so that the search is carried out smoothly (without
discontinuities and potential to miss the TC center) over the
ensemble spread.

7) Variation of Performance Metrics With Forecast Period:
The test simulations described earlier considered a total fore-
cast period of 48 h, which would enable autonomous operation
of the satellites for that period. Since updates from GEFS
are available periodically at a period of 6 h, it is possible to
update the satellite network with new ensemble information
and, hence, restart the EGCTF algorithm with new ensembles
every 6 h, assuming that ground-station resources (contacts
and station bandwidth) are available to the satellite network
every 6 h.

We explored the dependence of the EGCTF algorithm
metrics on the forecast period in steps of 6 h up to 48 h,
assuming ensemble updates from ground station to the satellite
network at those respective intervals. All other simulation
parameters are kept at their nominal values and observation
times are that of the simulated LEO satellite constellation (see
Section IV-C).

Fig. 13 shows the variation in the level of skill and
number of additional successful TC captures for different
forecast periods for test cases TF1–TF5. The results can be
cross-referenced with Figs. 6 and 15, which illustrate the
ensemble tracks, AEMN track, and the observation positions
for test cases TF1–TF5. Both the metrics are seen to improve,
in general, with increasing forecast period because forecasts
from the AEMN tracks worsen, while the forecasts from the
EGCTF algorithm maintain good performance due to regular
assimilation of observations. A positive skill and an equal or
more number of successful TC captures were observed over
all the forecast periods.

Fig. 14 shows the results of the number of cases exhibiting
skill greater than 0%, 25%, 50%, and 75% over different

Fig. 13. EGCTF metrics evaluated for different forecast periods for the cases
TF1–TF5. The performance of the algorithm (with respect to the baseline
method of using forecasts from the AEMN track) improves for longer forecast
periods. (a) Skill as a function of forecast period. Positive skill was observed
for all periods. (b) Number of additional successful TC captures using the
EGCTF algorithm (over and above the baseline method) as a function of
forecast period. In all the cases, the same or more number of successful
captures was observed when the EGCTF algorithm was used. The total number
of possible captures (observation opportunities) was 161.

Fig. 14. Number of cases with skill greater than 0%, 25%, 50%, and
75% is shown for different forecast periods for the 318 test cases utilizing
the 318 GEFS ensemble track forecasts of the 2018 hurricane season in the
Atlantic basin. Nominal set of parameters was used and the observation times
were derived from the observation opportunities available to the LEO satellite
constellation (see Section IV-C).

forecast periods for the 318 test cases using the 318 GEFS
ensemble track forecasts of the 2018 hurricane season in the
Atlantic basin (see Section IV-C); 290 cases exhibited positive
skill for the forecast period of 6 h and saturated to 303 cases
with positive skill at a forecast period of 48 h.

A note of caution must be considered while reading the
evaluated skills at the lower forecast periods (less than 12 h).
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Fig. 15. Ensemble, AEMN, best tracks, and EGCTF simulation results for test cases using track forecasts TF2–TF5. The observation timing vector corresponds
to the access opportunities by the constellation of LEO satellites described in Section IV-C. All the observations yielded successful TC center captures.

The skill was seen to be varying significantly over different
runs of the experiment, and the presented results are of one
such simulation run (a sample). Since the raw measurements
are noisy [nominal noise variance of (10 km)2, the predicted
TC center positions are not the same for different experiment
runs, although each run does use the same set of simulation
parameters and observation times. The effect (variability of

result) on skill is prominent during the lower forecast periods
as the algorithm is yet to converge to the true track. The effect
on the number of observations is relatively low.

V. CONCLUSION AND FUTURE WORK

We have proposed and demonstrated an algorithm (EGCTF)
that utilizes ensemble track forecasts as guidance while
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assimilating TC center measurements to improve previous
forecasts on the fly. The low computational load and the
use of only the TC center measurements from the payload
data make this algorithm a viable option for implementing on
a network of interconnected distributed sensors with sparse
connectivity, such as a constellation of satellites. The size of
the ensemble forecast data, which needs to be uplinked to the
satellites for the execution of the algorithm, was calculated to
be a modest quantity in the order of a few hundred bytes.
Only the observation times, positions, and the TC center
estimates (derived from the raw observation data) need to be
shared among the network of sensors, which is feasible within
commonly available communication bandwidth between the
individual satellites.

The proposed algorithm consists of the following main com-
ponents to predict the TC at a future timestamp: 1) regression
of noisy TC center measurements over a predefined (time)
length to produce more accurate TC center estimates; 2) use
of estimated TC center positions to find optimal ensemble
weights; 3) use of failed observation positions to further refine
the weights; 4) formulation of the optimal mean ensemble;
and 5) extrapolation from the immediate prior TC center esti-
mate to the forecast timestamp using the displacement vector,
as calculated from the optimal mean ensemble. The algorithm
was tested with data derived from the hurricanes in the year
of 2018 within the Atlantic basin. The GEFS 21 ensemble
members were used as the ensemble track inputs for the test
cases, and the NHC Best Track data were used as the truth
data. Access opportunities by an LEO satellite constellation for
a region over the Atlantic basin were simulated using orbital
dynamics and available opportunities used as the observation
times. Uniformly spaced observation times (at different peri-
ods) were also explored as comparative observation timing
vectors.

Metrics of evaluation include the distance error de, average
distance error d̄e, skill s, and the number of successful
captures. Results for the test scenario with the observation
timings derived from the LEO satellite orbital simulation
showed positive skill for 303 cases of the total 318 cases
simulated for a forecast period of 48 h. The skill was over
75% for 247 test cases, and TC centers were captured more
than 90% of the time in 271 test cases. Sensitivity to various
aspects of the EGCTF algorithm was explored via the tests,
such as the behavior with respect to noise levels of the TC
center measurements, subsegment length Lsseg (an algorithm
parameter), consideration of ensemble track displacement
for the extrapolation process, and rewarding tracks based
on distance from a failed observation point. In terms of
increasing observation frequency, it was found that beyond
an observation rate of 20 observations per hour, the algorithm
provided diminishing returns in terms of error. Nonetheless,
the obtained error (d̄e) was smaller than that of the TC center
measurement standard deviation noise. Error also depends
on the particular ensemble track forecast, suggesting that
better ensemble member forecast data can lead to improved
performance. All comparative metrics were seen to improve
for longer forecast periods because forecast quality by the
baseline method degrades, but the quality of forecast from

the EGCTF algorithm remains steady due to the assimilation
of observations.

While in this work we considered ensemble forecasts input
from a single NWP model (GEFS), the use of ensemble
track forecasts from multiple models such as the Euro-
pean Center for Medium-Range Weather Forecasts Ensemble
Prediction System (ECMWF EPS) is of interest as future
work. Furthermore, depending on the payload data, it may
be possible to obtain other types of TC information from
an observation beyond simply its center position, such as
the direction of the cyclone and intensity. Incorporating this
information into the assimilation process could lead to better
forecasts. Another aspect, which remains to be incorporated is
a “smooth continuation” when updated ensemble information,
is provided from the ground station. The forecasting process
can be continued by simply restarting the EGCTF algorithm
with the new ensemble information; however, performance
may be discontinuous if the ensemble data have initial bias
error. A smooth continuation can be explored by using the
previous observation and ensemble information. Finally, while
this article demonstrates the application of ensemble forecast
as guidance for on-the-fly prediction of TC tracks, the same
concept is relevant to predicting other natural phenomena with
the goal of coordinating satellite observations.

APPENDIX

MORE PLOTS OF THE TRACKS AND OBSERVATION POINTS

USED IN THE TESTS

See Fig. 15.
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