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Abstract—Distributed Space Missions (DSMs) are gaining 

momentum in their application to Earth science missions 

owing to their ability to increase observation sampling in 

spatial, spectral, temporal and angular dimensions. Past 

literature from academia and industry have proposed and 

evaluated many cost models for spacecraft as well as 

methods for quantifying risk. However, there have been few 

comprehensive studies quantifying the cost for multiple 

spacecraft, for small satellites and the cost risk for the 

operations phase of the project which needs to be budgeted 

for when designing and building efficient architectures. This 

paper identifies the three critical problems with the 

applicability of current cost and risk models to distributed 

small satellite missions and uses data-based modeling to 

suggest changes that can be made in some of them to 

improve applicability. Learning curve parameters to make 

multiple copies of the same unit, technological complexity 

based costing and COTS enabled small satellite costing have 

been studied and insights provided.  
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1.  INTRODUCTION 

 

Distributed Space Missions (DSMs) are gaining 

momentum in their application to Earth science missions 

owing to their ability to increase observation sampling in 

spatial, spectral, temporal and angular dimensions. DSMs 

include homogenous and heterogeneous constellations, 

autonomous formation flying clusters [1] and fractionated 

spacecraft [2]. While DSMs aim at improving science 

performance and at reducing cost and risk by increased 

mission flexibility, scalability, evolvability and 

robustness, there is significant likelihood of increased 

costs and risks associated with launch and operations 

costs. To avoid being cost prohibitive, small satellites will 

be required to enable DSMs, especially those with large 

numbers. However, costing small satellite DSMs is 

challenging because of the following reasons: 

 

 There is no standard cost-to-copy database or 

learning curve model established for multiple 

satellites. NASA prescribes an 85% learning curve 

[3] which will be investigated in this paper. 

 Standard models including the Small Satellite Cost 

Model or SSCM [4] (parametric costs) and the 

RAND Models [5] (analogical costs) range from at 

least 20 kg to 500 kg of satellite mass. There is a 

large class of small satellites including the cubesat 

standard that falls out of range for both such 

traditional models. 

 Constellations especially formation flying missions 

have more programmatic overhead and need more 

ground station support for orbit maintenance. This 

translates to operations cost more than what 

parametric percentages estimate. 

There is, therefore, a need to assess the applicability of 

current cost models to small satellite DSMs and to 

formulate reliable cost model components to fill up the 

existing gaps. The improved cost model should efficiently 

differentiate between costs of the different architectures 

for designing a DSM toward a particular Earth 

observation goal and therefore serve as a tool to 

understand the cost impact of increased performance. 

Such a cost tool is especially important for DSM design 

because of the larger number of variables than traditional 

spacecraft design (e.g. number of satellites, inter-satellite 
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distances) and because DSMs are theoretically optimized 

using  value centric system design [6]. 

2.  LITERATURE REVIEW 

Small Satellite Nomenclature  

First, it is important to define the scope of ‘small 

satellites’ that this paper intends to address. In Europe, the 

need for standardization of small satellite nomenclature 

was fist captured in an IAA review paper [7]. ESA 

defined small (350-700 kg), mini (80-350 kg) and micro 

(50-80 kg) satellites while EADS Astrium defined 

miniXL (1000-13000 kg), mini (400-700 kg) and micro 

(100-200 kg) satellites. The review discussed other small 

and large satellite nomenclatures, their typical revisit 

times, ground sample distances and Earth observation 

applications. In the US, the National Academy of 

Sciences published a report in 2000 [8] defining the core 

observational needs (required measurements, data 

continuity, etc.), payload characteristics and buses but 

size nomenclature was not assessed. The first size based 

classification was in 1991 by Sweeting [9] and refined 

further by Kramer et al in 2008 [10] into nano, micro, 

mini, small and large. Konecny [11], and later reviewed 

by Xue et al [5], extending the range of mini-satellites 

from 100 to 1000 kg, abolishing the medium satellite 

class which was originally 500-1000 kg. Almost 50% 

nanosatellites (<10 kg), investigated in 2010 [12] had the 

cubesat form factor while others were spherical, 

rectangular or cylindrical. 

 

The late 1990’s brought in the CubeSat era in the space 

industry. While most earlier CubeSats were used for 

technology demonstration and educational outreach [13], 

they have been used for scientifically significant Earth 

observation missions over the last decade. Nanosatellites 

such as the SPHERES have been used simultaneously for 

science, engineering testing, algorithm testing [14] as well 

as outreach [15]. Cubesats with scientifically important 

payloads leading on important results in Earth science 

have also been flown [10], [16]. Most cubesats till date 

have been launched as secondary payloads by the P-POD 

launcher. NASA funds a few dozen every year through 

the NASA and the Launch Services 

Program [17](ELaNa).  Satellites over 100 kg use the 

ESPA (EELV Secondary Payload Adapter) ring to fit 

inside large launch vehicles and are also launched as the 

secondary payload. NASA funds a few launches every 

year through the University Nanosatellite Program (UNP) 

for this class of satellites. QB50, a constellation of 50 2U 

cubesats, is scheduled for a dedicated launch in 2015 

using the Russian Shtil 2.1 and will be the first primary 

cubesat payload launched. [13] has looked at monolithic 

cubesat technologies for Earth observation while [18] 

plotted the typical altitude-inclination options available 

for secondary cubesat launches. As expected, maximum 

opportunity is seen between 400-800 km and inclinations 

corresponding to the International Space Station or Sun 

Synchronous orbits. 

 

 

Table 1: Examples of recent Cubesats for Earth 

Observation Missions

 

 
 

 

Figure 1 - top panel - defines the small satellite 

nomenclature to be used in this paper and for the models 

developed in this research. The nanosatellite class (1-

10kg) is the home for currently active cubesats, 1U being 

1 kg up to 3U being 3 kg. As larger cubesats are 

developed, such as 6U at 10-12 kg or 12U and 27U, the 

cubesat standard will be pushing the bounds of 

nanosatellites into the microsatellite category. Figure 1 – 

bottom panel – shows the examples of small satellite 

missions, as reviewed in [10] up to 2008, categorized into 

the above defined classes as vertical columns arranged by 

mass of their satellites. While mini-satellites dominate the 

space, over the last four years, nanosatellites have 

increased greatly in numbers owing to the cubesat form 

and launch opportunities. 
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Figure 1: Small Satellite Nomenclature (top panel) and 

examples[10], [16] of Earth Observation Missions 

(bottom panel) grouped into vertical columns based on 

their size-based classification  

 

 

Cost Modeling Literature  

Formal cost modeling in the Phase A stage of the mission 

lifecycle was started by JPL after the formation of Team 

X more than10 years ago [19], [20]. TeamX is the JPL 

Advanced Projects Design Team, an interdisciplinary 

team of engineers that "utilizes concurrent engineering 

methodologies to complete rapid design, analysis and 

evaluation of mission concept designs"
1
. The TeamX 

model included costs through all phases of the mission 

lifecycle using data from 60 previous missions – for 

model prediction and validation [19], [20]. The payload 

model was exhaustive [21] and the spacecraft model was 

based on the cost per subsystem as a function of the mass 

of that subsystem. Wrappers as a percentage of the total 

cost of spacecraft and instrument development were used 

for the following Work Breakdown Structure (WBS) 

elements: program management, outreach, systems 

engineering, assurance testing, launch vehicle and 

                                                           
1
 http://jplteamx.jpl.nasa.gov 

integration, etc. The statistical tools that JPL used for cost 

model included: (1) Regressive fitting of polynomials (log 

or linear); (2) Residual analysis to find if there were 

correlations between residual cost and other variables that 

were not captured (e.g. design life) or if the distributions 

were normal, variances significantly different from the 

original population (using F or chi2 tests); (3) Model 

Validation where in the analysts kept 30% of the data 

aside for testing purposes and asked if the model 

predicted and actual populations differ with more than 

95% confidence (T and chi2 tests); (4) Monte Carlo 

simulations to check the model output against probability 

of predictions, confidence intervals and possible forecast 

errors. 

  

The RAND Corporation did an extensive survey of small 

satellite missions with the intent to derive a cost model 

through analogy. They used 12 NASA missions and 

Clementine [5] and evaluated total mission cost (or TMC) 

from conception to data analysis. Costs were collected 

and analyzed by phase (design, development, test, launch, 

operations) and spacecraft subsystems and labor rate 

assumed to be $132k/professional year (FY 1998) [5]. 

They found the average NASA small satellite mission to 

cost $145 million, take 3 years to develop and have a dry 

mass of 407 kg which accounted for 41% of the TMC. 

This was an average over different missions with different 

objectives. Technical specifications considered in [5] and 

[22]–[25] were design life, apogee, inclination, 

contractors #, instrument mass, propellant mass, dry bus 

mass, total wet mass, spacecraft volume, launch vehicle, 

upper stage, bus pointing accuracy, bus pointing 

knowledge, stabilization type, thrusters #, fuel type, 

thermal system mass, power system mass, solar array 

material, array area, array efficiency, Beginning-Of-Life 

(BOL) power, End-Of-Life (EOL) power, system power 

density, battery type, downlink Data Rate (DR), 

communication band, transmitter power, central processor 

Million Instructions Per Second (MIPS), memory, harness 

pinouts, and Source Lines of Code (SLOC). Finally, a 

Factor of complexity was calculated through a discrete 

scale [5], [23] cost per kg of the spacecraft was 

normalized using this factor and regression analysis, 

where S/C Cost (in $K) = 64.37*m*FC + 9095 [5]. 

Complexity was accounted for quantitatively (vs. JPL 

which only used a binary variable). Complexity 

parameters considered included Technology Readiness 

Level (TRL), mission type, design life, spacecraft density, 

instrument mass fraction, bus pointing, solar array and 

power system efficiency, DR, proc, SLOC, memory.  

 

http://jplteamx.jpl.nasa.gov/
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The typical problems that RAND uncovered with respect 

to spacecraft costing [22] were data limited by the 

following: small sample sets because large scale 

production in spacecraft manufacturing does not exist, 

suppliers rarely making internal efficiency optimizations 

because delivering highly integrated payload requires 

very specific designs therefore no minimal generalizations 

and diverse stakeholders for every mission. Expert 

opinion proved superior to formal estimation in 33% 

cases (15 total), inferior in 33% and no difference in the 

last 33%. Unmitigated technical risk was identified as the 

biggest factor in cost overruns [22], cases studied being 

SBIRS and GPS, and the risks were primarily attributed to 

inadequate systems engineering, aggressive adoption of 

commercial standards for military applications, lack of 

process controls at contractors or their lack of domain 

knowledge and reduction in acquisition workforce due to 

budget cuts. In spite of the above problems, some projects 

did have risk assessment for each WBS but were limited 

by the following problems [22]:  

 

 Little data availability (e.g. inadequate reviews of 

contractor work) 

 Credibility (e.g. inadequate experience, judgment, 

independence) 

 Limitations in risk quantification (e.g. analysts 

assumed 17% cost growth when historical data 

showed 50% growth and led to 250% in reality, 

expert subjectivity, erroneous cost-probability 

distributions for ‘risks’, random functions were used 

for probability distributions) 

 Unavailability of methods for large cost growth (e.g. 

risk is defined as variance of prediction so low 

prediction implies low risk without any validation of 

such an assumption) 

 

The RAND study of Air Force Missions found that most 

mission costs grew over their lifetimes or experienced 

mission creep. A metric called Cost Growth Factor or 

CGF was defined as the ratio of the final cost to the 

estimated costs using Milestone II estimates [23] where 

CGF < 1 represented underruns and CGF > 1 represented 

overruns. Uncertainties and cost growth [23] were 

identified to be caused by new technology, economic 

conditions or rare events after accounting for funding 

category, inflation, timeline/milestones and other such 

correlations. Recommendations included using many 

validation methods and having a consistent tracking 

method in place. 

 

 

 

Table 2: Typical cost models available for pricing the development and operation cost of a LEO satellite mission [22] 

 

 

There are several cost models available for costing 

satellites in low Earth orbit (LEO), as identified in Table 

2 [26]. The major methods are categorized under top 

down estimations or parametric models, bottom up 

estimations or component models, analogy based 

estimations from historical missions and expert judgment. 

Specifically for Earth observation missions from LEO, 

instrument cost is a parametric function of mass, power 

and data rate. Bus cost is the sum of costs from different 

subsystems which is a parametric function of the 

subsystem mass. Integration, assurance and test (IAT) and 

systems engineering (SE) costs are a function of satellite 

mass (recurring) or satellite cost (non-recurring) while 

operations cost is a function of lifetime and spacecraft 

cost as obtained from the NASA Spacecraft Operations 

Cost model [27]. Operations cost of small satellites is 8% 

of TMC and 20% of bus cost, more than large satellites 

where operations is only 7% of bus cost [28]. This again 

is dependent on the human resource costs in the operating 

organization. Program overhead includes recurring and 

non recurring [26] costs with respective cost estimating 

relationships (CER) errors of 39% and 36% (lower for 

small satellites). Overall overhead is 8.9% and 9.3% of 

bus cost for small and large S/C respectively [5], [28].  
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Schedule slippage as percentage of total development 

time is a function of the TRL of the least mature 

component [26], [29], which in turn can map to cost 

overrun as a percentage of TMC [25]. Programmatic risks 

can be defined as a function of the sum of all TRLs below 

a threshold or to make them architecturally distinct [26]. 

Launch risks are significantly lower if distributed launch 

is used, therefore making a stronger case for DSMs with 

staged launches. Launch risks can be quantified either 

through a concave risk aversion curve or through the 

concept of entropy [26], [30]. Accounting for net present 

value and cost spreading improves the above cost 

estimates. 

 

Costing multiple copies in DSMs 

Cost modeling has been done and published publicly for a 

few planned DSMs, for example, GEOScan [31], TechSat 

21 [32], [33], DARPA Phoenix [34].  

 

The GEOScan (66 instruments of <5kg each for Iridium 

NEXT) mission proposed to minimize cost using standard 

John Hopkins University Applied Physics Lab (JHU 

APL) business practices and a streamlined management 

approach.  Their studies initially assumed a cost copy 

factor of 35% [20], [21], performed regression analysis on 

Juno JEDI, Van Allen Probes RBSPICE and STEREO 

and validated a cost copy factor of 30-40% for their 

engineering practices.  

 

The Generalized Information Network Analysis (GINA) 

tool was developed at MIT and applied to TechSat 21 [32] 

to evaluate performance and cost of a DSM. Complexity 

was not considered aside from the number of spacecraft. 

The author characterized capabilities of a DSM as a 

function of information isolation, rate, integrity and 

availability and performance as the probability that 

system satisfies requirements in terms of capability and 

used Markov states and integrate on lifecycle cost as a 

sum of baseline cost and failure compensation cost. The 

cost model captured program slip and adaptability metrics 

(e.g., changing configuration for the same mission, i.e., 

elasticity, or adapting for different mission goals, i.e., 

flexibility) could be added. The GINA model was 

combined with multi objective optimization to select the 

most suited architecture for any specific mission [33]. For 

example, in the Terrestrial Planet Finder case study, the 

trade was between acquiring a certain number of images 

and the cost as characterized by the GINA model. 

 

The Phoenix project assessment [34] performed by JPL 

and Aurora Flight Sciences uses a complexity based cost 

model to estimate development costs ([30], [35]); it uses 

parametric equations for programmatic cost estimation 

and the usual 85% NASA learning curve estimate to 

calculate the cost of making many copies of the same 

spacecraft.  

 

Launch Cost Modeling 

Modeling launch costs for multiple spacecraft is difficult 

because of the complexity of choosing between single and 

staged launches and/or primary and secondary launches. 

TransCostSystems in Germany [36] used “cost 

engineering” applied to Launch Vehicles (LV) and 

minimized development and operations cost rather than 

the traditional approach of maximizing performance and 

minimizing weight. LV cost models demonstrated 

included PRICE-H, TRASIM, TRANSCOST and it was 

found that all CERs compute costs to be 15-25% higher 

than ideal cost. Cost was calculated as a function of 

payload capacity, engine technology, number of engine 

qualification tests, engines per stage, maintenance and 

refurbishment.  Just lower weight did not mean lower 

cost. For example, thrusters were found to last longer if 

operated at 5-8% below max thrust therefore eliciting a 

trade between lifetime performance and deployment cost. 

Similarly, there was an automated optimizer to tap into 

different technologies to minimize cost.  

Risk and Uncertainty Assessment 

The RAND reports ([22], [23]) discussed in the previous 

sections highlight the critical impact of risk on cost, 

therefore more literature was reviewed to summarize 

available methods and statistically derived quantities 

quantify estimating uncertainty [23]. The studies 

concluded that uncertainty about technical and 

programmatic inputs need to be quantified. Expert 

opinion has biases stemming from information 

availability, representativeness, anchoring and adjustment 

and overconfidence. There may also be conflicts of 

interest or the process may be over-rushed. Cause-effect 

relationships can be quantified using Markov trees. Risks 

should be defined, understood and evolved with an 

evolving system.  

 

Recommendations [23] on risk assessment included the 

use of multiple independent experts, asking experts to 

provide, at a minimum, upper, lower, and most-likely 

values for cost elements under consideration, fitting a 

triangle distribution to these three numbers and using the 

upper and lower values to bound 90 percent of the 

probability; eliciting other percentiles to counter the effect 
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bias and providing feedback to expert in an iterative 

process that is documented.  

Cost Risk methodologies [24] include qualitative and 

quantitative methods as shown in Figure 2. The following 

cautions apply to data collection and analysis methods 

mentioned in the figure. Historical analogies need 

credible data from similar projects which are hard to find 

and susceptible to large time scales. CGF may be data-

based but it does not capture layers of influence that 

caused the growth. Sensitivity analysis needs exact CERs 

however, if the range of variation is not known a priori, 

select hazards should be identified. Probabilistic outputs 

as distribution functions instead of a deterministic point 

estimate should be encouraged. Error propagation is easy 

when CERs are linear, but complex relationships 

including precision of input and accuracy of computers 

need to be considered for probabilistic outputs. 

 
Figure 2: Summary of cost risk assessment methods 

suitable for spacecraft programs [24] 

   

Subject matter experts capable of estimating cost and 

uncertainty, are very flexible but may be biased, thus 

careful, iterative, conduction and documentation is 

required. Different methods in Figure 2 should be 

combined to mitigate bias inherent to a single method. A 

method of moments is easy for normal distributions – 

means, variances add. For other distributions, percentiles 

are hard to calculate. For such cases, Monte Carlo (MC) 

simulation finds integrals and sums of random variables 

which are too complex for closed-form equations. MC 

methods may add and propagate variables, different 

distributions (Weibull, lognormal, triangular) can be used, 

expert opinion can be included, correlations captured and 

are well-understood numerically. It is a computationally 

expensive method and saved only for very high fidelity 

calculations.  

 

Overall, methods to evaluate uncertainty are suggested in 

the RAND Cost Uncertainty Report for the USAF 

Weapon Systems [24]: 

 

• Benefit-cost analysis (but benefits/risks difficult to 

quantify) 

• Expert judgment (use Delphi method but experts can 

disagree) 

• Fault tree analysis (for complex, correlated risks 

with specific hazards considered and cost risks 

rolled back into the WBS) 

• Focus groups/one-on-one interviews (for individual 

behaviors, communication error warning esp. among 

decision makers) 

• Root cause analysis or FMEA (examine the 

consequences of failures or risk and chains of them 

and make recommendations. Can also introduce the 

control system approach of STAMP) 

• Behavior modeling (cognitive processes of humans 

in the loop) 

• Data-based methods (tornado plots, regression 

analysis) 

• Integrated assessment (precision, validity, bias, 

dominos, records so that credibility of methods can 

be validated) 

 

Technical, economic, cost and schedule risks should be 

considered [24] and the method will depend on the 

program and potential risks, i.e. scenario driven analysis. 

There should be a preference for the more complex 

methods (probabilistic or sensitivity) because they can be 

tailored to the program. Historical analysis should be used 

in cases characterized by little time or information or as a 

supplement. Monte Carlo is not always the best because it 

lacks transparency, is subject to implementation errors 

and requires significant data and time.  

 

Value centric risk methodology (or VCRM) was first 

mentioned in the context of the DARPA F6 Program in 

[2], [6] and [37] for value centric design in academia and 

industry. 

 

Risk types considered were: technical (e.g. low TRL of a 

new component being deployed such as a polymer 

battery), cost (e.g. outsourcing not working out due to 

export control), and programmatic (e.g., the launch 

vehicle not ready). Risk management mechanisms 

suggested were: take, avoid, and mitigate. VCRM was 

given a stronger quantitative framework by de Weck 

when applied to the  DARPA F6 Phase 2 [38]. The report 

quantifies probabilistic impact of individual risk items on 
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project value using Value-at-Risk-Gain (VARG) curves. 

They recap the traditional approach of VCRM (Identify, 

Analyze, Plan, Track, Control) and typical tools (Layers 

of Risk Model based on influence on the risk, Risk 

Matrix). The management plan tracks the risks over time 

to ensure a “burndown path”. This model addresses the 

shortcomings of the traditional model where in the impact 

on mission value is not quantified and coupling and 

decoupling of risks not available. Risks are identified 

from and coupled to the uncertainty source. Probability of 

occurrence is available from a Markov Model S+ state 

transition matrix where robustness and adaptability 

measures can also be coded. Risk impact computed by 

turning input knobs, individual and coupled, VARG, 

probability and impact computed over lifetime (like 

Monte Carlo methods).  

Capturing Complexity 

Since all risk reports caution against technical and 

programmatic risks and small satellites pack state of the 

art technologies into a small form, it is very important to 

quantify complexity of small satellite DSMs and map this 

complexity to cost and risk. Typical spacecraft 

complexities discussed in the literature fall into three 

categories: 

 

• Component-level complexity 

– Aerospace Corporation has a very evolved 

method of quantifying component complexity 

relative to existing flight components and claims 

it to be a better metric of mission “cost” than 

dollars ([39], [40]) 

– Technical uncertainties can be factored into 

component complexities as a function of TRL as 

demonstrated in the DARPA META program 

[30] 

 

• Structural complexity ([30], [35]) 

– Complexity arising from complex dependencies 

within the system 

– Can be calculated from the design structure 

matrix of the system, captures emergent behavior 

and influences development cost of the system 

 

• Dynamic complexity ([30], [35]) 

– Representative of operational complexity during 

different mission stages 

– Each mission mode can be quantified in state 

space and the probability of success of each 

mode calculated 

 

Eventually, the idea is to calculate the impact on cost of 

all the above complexities however such a mapping 

currently exists for only component and structural levels. 

3.  DATA AND METHODS  

 

From the literature review, we gathered the following 

insights for improving cost models for small satellite 

DSMs: 

 

 To calculate cost to copy, cost data of an in-house 

DSM mission before and after CDR (Critical 

Design Review) will be needed. For example, the 

second copy of SwissCube [41] or SwissCube-2 is 

expected to be  45-60% of the original Swiss-Cube, 

depending on spares and assuming a new 

workforce. Regression analysis on other missions 

(especially NASA missions) will provide more 

insight.  

 In the absence of openly available WBS data on 

small satellites, the available cost models cannot be 

improved to get more precise CERs for small 

satellites. Snatches of data available from online 

[42] and GSFC released sources can at most let us 

check the validity of the CER estimates for small 

satellites. 

 Lifecycle risk modeling using techniques such as 

Monte Carlo and VARG is possible from a 

theoretical standpoint but model fidelity is 

questionable without risk-cost data for validation.  

 

All the above techniques – cost to copy, single satellite 

modeling and lifecycle simulation – can be combined into 

a “system dynamics” or System Dynamics (SD) model of 

DSM operations. System Dynamics is a well-established 

field that draws inspiration from basic feedback control 

principles to create simulation models [43]. SD constructs 

(stocks, flows, causal loops, time delays, feedback 

interactions) enable investigators to describe and 

potentially predict complex system performance, which 

would otherwise be impossible through analytical 

methods. SD is argued to be superior for DSM modeling 

in comparison with other modeling tools such as discrete 

event simulation like VARG or Monte Carlo methods, 

because it is a robust, discrete time simulation that allows 

simultaneous simulation of quantitative and qualitative 

parameters, captures latencies and delays, captures non-

linear processes through simple causal structures and 

physically explains complex feedback interactions based 

on these simple structures [43], [44].  
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The component interactions in the SD model (e.g. causal 

relationships) can be quantified using known parametric 

or physics-based equations obtained from the literature 

review and captured insights above. The behavior of each 

module of the model is benchmarked against data – 

whenever available, even if very sparse - from past and 

current DSMs. We have compiled a list of 60 DSMs – 

introduced in the next section - which can be used as 

reference modes to calibrate the SD model.  

 

 

Figure 3: Examples of previous and planned DSMs 

sorted by their individual spacecraft masses (average 

when not homogeneous), grouped by the small 

spacecraft class defined in Figure 1 

 

Collection of Data from Past Missions  

The NASA GSFC Distributed Space Missions Group [45] 

gathered data from 59 DSMs – past, operational and 

planned – from publicly available sources. They spanned 

over many architectures such as constellations, clusters, 

formation flying, virtual telescopes, etc. and over a wide 

range of applications including science, commercial 

communications, defense and technology demonstrations. 

The data was sorted based on type of mission, spacecraft 

configuration, number of spacecraft, lifespan, cost, etc. so 

that insights could be drawn on DSMs. Figure 3 shows 

DSMs from this study grouped in vertical columns by the 

mass-based satellite classes defined in Figure 1’s top 

panel. The average masses of the individual spacecraft 

determine the position on the Y-axis of the data point. 

  

Unfortunately, cost data from public sources was not 

available for all the missions and WBS elements were not 

available at all. Reference [42] reported schedule slips 

and cost overruns for many of the above missions, 

especially those without fixed price contracts. Annual 

contracts were often re-negotiated for every year for every 

contractor leading intractable cost data collection issues 

as well as an incalculable creep. To avoid getting into 

unreliable details, only the total cost of the mission as it 

stands today was used.  

 

Note that although the data has been primarily sorted by 

mass for regression analysis (for simplicity), small 

satellite mission costs are primarily driven by technology. 

For example, 20Mbit/s X-band transmitters by Axelspace 

in Japan at 1 kg mass cost $300,000 because the cost is 

driven up by shrinking a very high tech instrument into a 

small form. Cost is thus a factor of both the high tech and 

the small size. This implies that for a sufficiently 

advanced Earth observation mission, the benefits of 

cheaply launching a lower mass may be outweighed by 

fitting the technology into the lower mass. Cost models 

should be able to capture the conflicting effects of both 

variables to select the right monolithic architecture and 

therefore, DSM architecture. 

4.  RESULTS AND INFERENCES 

 

Insights from analyzing the data from 59 DSMs and 

estimating costs using available cost models are presented 

in this section. The system dynamics modeling results to 

calculate development and operations cost and address the 

lifecycle risk gap in literature will be described in a later 

publication.  

Regression Analysis of Past Mission Data 

For regression analysis, we will revisit the DSMs from 

Figure 3. Twenty of the fifty nine studied DSMs, masses 

notwithstanding, have two homogeneous or 

heterogeneous spacecraft. The Earth observation missions 

or ones with science payload clearly show a decreasing 

mass with increasing numbers. The navigation and 

communication missions costing billions of dollars are the 

ones on the top right.  

 

Thirty five of the fifty nine missions for which cost and 

mass data was available have been scatter plotted in 

Figure 4. The colors correspond to the size based classes 
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of the DSM satellites. For each class, linear (top) and 

exponential (bottom) curves are fit to the cost vs. number 

of satellites data spread.  Under the over-assumption, that 

the classes represent similar sizes and the same 

organizational framework developed and operated all the 

missions, linear curves represent non-recurring costs and 

exponential curves represent recurring costs. 

Nanosatellites and medium satellites are the only classes 

that show a high correlation for both types of fits, 

possibly owing to similar modus operandi of DSM 

development over the available data set. This also helps 

establish consistent data for the nano-satellite class.  

 

The scatter plot in Figure 4 was also sorted in terms of 

types of orbits, spatial relationship between the satellites, 

functional category, etc.; however none of those 

groupings produced a correlation coefficient higher than 

the size based sorting. Hence, the latter was used for 

further regression analysis.  

 

While Figure 4 assumes the entire cost to be either non-

recurring (top) or recurring (bottom), reality is a 

combination of the two where:  

 

TMC = NRE + RE 

NRE = NRE0 * N 

RE = RE0 * N
log

2
b
 

(1) 

Non-recurring costs are one-time expenses and therefore 

do not follow the economies of scale. Recurring costs 

alleviated from having more units because learning 

reduces further costs. For example, ground system costs 

are considered entirely non-recurring costs while launch 

costs or integration and testing costs are entirely recurring 

costs [27]. Other WBS costs are a combination of both.  

Non-linear least squares regression was then used with the 

TMC data to find RE0 (theoretical first unit – TFU -  

recurring cost), NRE0 (TFU non-recurring cost) and b 

(learning curve factor). The results for each mass-based 

class of satellites have been listed in Table 3, right panel. 

The learning parameter is 0.77 for nano-satellites and 0.79 

for medium satellites, which is lower than the NASA 

prescribed value of 0.85 [3]. Under the assumption of 

TMC = RE, linear least squares regression may be used 

and the results are listed in the left panel. It is only under 

this assumption that we get the NASA prescribed learning 

factor of 0.85 or more. The analysis shows that the 

prescription possibly overestimates the cost of making 

multiple copies of a spacecraft. 

 

 

 

Figure 4: Scatter plot of previous and planned DSMs 

by the size of their individual spacecraft masses 

(average when not homogeneous) and number of 

physical entities in the DSM, grouped (in color) by the 

small spacecraft class defined in Figure 1. Linear (top) 

and exponential (bottom) regression curves for each 

size-based group shown 

 

 Table 3: Inversion of learning curve parameters using 

data shown in Figure 4. [Left] Linear inversion 

performed assuming only recurring costs, [Right] 

Non-linear inversion performed assuming sum of 

recurring and non-recurring costs 

 

  
 

 

Learning Curve Calculations from Cost to Copy Factors 

JHU APL published results of their analyses to find the 

cost to copy multiple copies of a spacecraft or instrument 

in 2013 [46]. APL has developed and manufactured the 
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JEDI (N=3), RBSPICE (N=2), STEREO (N=2) and Van 

Allen Probes (N=2). They published the cost to copy 

(C2C)  to be 28%, 45%, 41% and 36% respectively [46]. 

This implies that it cost APL 28% of the first unit of JEDI 

to build the second or third unit. It can be seen that C2C 

decreases with decreasing N. Assuming that JEDI and 

RBSPICE were all copies of each other [46], the C2C for 

2, 3 and 5 units was plotted in Figure 5 [46]. Assuming an 

initial learning curve factor (b=85%), if we fit the learning 

equation below to the data in Figure 5, the estimated 

learning parameter is b = 66.2%. This value will be used 

for costing multiple spacecraft in the next section, based 

on traditional models to estimate the cost of the first unit. 

 

 

 
Figure 5: Cost to Copy (C2C) factors derived from 

cost data available within JHU Applied Physics Lab 

for instruments developed within their facility [46] 

 

 

Applicability of Small Satellite Cost Models 

This section discusses the application of traditional cost 

models, specifically the SSCM [47] and the RAND 

models [5], [25] to small satellite masses. Project reserves 

in keeping with the percentages of WBS elements that are 

used in NASA GSFC have also been included. A learning 

curve parameter of 0.662 from the previous section has 

been used and has been applied to only the recurring 

fractions of the TFU cost. Recurring fractions are 

obtained from reference [47], for example ground station 

support is 0 and IAT is 1.  

 

Figure 6 compares the total mission cost minus launch 

costs of a 1, 2, 5, 9 and 13 satellite DSM using the SSCM 

(solid lines) and RAND models (dashed lines). In both 

cases, we used SMAD’s parametric CERs to estimate bus 

and instrument cost as a function of mass, lifetime and 

data rate. All other values were model specific.  No 

complexity, launch costs or extra ground operations costs 

were considered over the regular operations. Software 

costs were a function of lines of code only, which were 

very difficult to estimate; eventually values analogous to 

the MIT SPHERES satellites were used ([48], [49]) as 

currently functional on the International Space Station. 

(RAND, [5] and [25]). The coefficient of cost estimated 

in ground operations in the SSCM model is double that in 

RAND. Since ground operations have been assumed to be 

entirely non-recurring, the learning economies of scale do 

not apply. As a result, the cost predicted by SSCM is 

lower for few satellites but overshoots the RAND 

estimates for more satellites. Interviews with experts at 

NASA GSFC revealed that ground operations are more 

complex and cost more for DSMs than monoliths so the 

SSCM model seems intuitively more representative.  

 

 
Figure 6: Comparison of costs estimated using RAND 

Corporation’s analogous cost model applied to known 

S/C and instrument costs [19], [22] – dashed lines, 

SMAD’s Small Satellite Cost model [4] – solid lines 

with data from real missions – text colored by the 

closest modeled spacecraft weights 

 

 A few candidate DSMs from Figure 4 have been 

highlighted on Figure 6 in the same color as the closest 

modeled spacecraft weight. While most of the data falls 

very close to the predictions, many precautions should be 

made. The GRACE mission was an international 

cooperation between USA and Europe and the cost here 

only includes the USA section. DesdYNI’s two physical 

entities are so different that they could be two different 

missions rather than the same DSM, therefore no gain 

from the learning curve. DesdYNI has now been 

transitioned into the NASA-ISRO SAR mission. 

CYGNSS and CLARREO have are not yet operational so 

the cost cited is expected cost, and therefore not real data. 

Finally, since none of the models are applicable to model 

<10 kg spacecraft, the nano-satellites in Figure 6 do not 

have a curve to fit them. Again, total cost data is very 

hard to find, e.g. QB50’s cost project does not include the 

internal costs incurred by the universities building the 

individual satellites.  
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Figure 7: Cost estimated per subsystem (bar chart on 

top) of one spacecraft by the Aerospace Corporation’s 

Small Satellite Cost Model (SSCM) based on inputs 

for a candidate nano-satellite mission (bottom excel 

spreadsheet) 

  

The SSCM model was then used to calculate the total cost 

of developing and manufacturing only the first small 

satellite of mass 10 kg and other specifications listed 

under ‘Inputs’ in Figure 7. The cost calculated for every 

subsystem and the total cost of $15.08 million in FY 2010 

is therefore a function of technological variables like 

power and pointing and not just mass.  

 

To check the sensitivity of technology used to cost, we 

varied some of the input parameters and checked its effect 

on cost in FY97 $million. Changing the data rate from 10 

kbps to 10 MBps to 1 GBps resulted in a cost of $11.35, 

$11.4 and $11.45 million respectively. Since COTS 

products will be used to support the communication link, 

these cost estimates imply that there will be only a 

$100,000 difference in deploying a radio transmitter (10 

kbps) or deploying an optical transmitter (1 GBps) on the 

10 kg nano-satellite. While previous proposals have 

certainly supported the availability for laser technologies 

[50], the optical demonstrations that are currently being 

developed by DLR in Germany and the Aerospace 

Corporation in the US [51] clearly demonstrate that the 

cost of optical technology is more than that. Similarly, 

changing the pointing accuracy from 0.1, 0.01 to 0.001 

degrees resulted in the cost increasing from FY97 $ 6.45, 

11.33 and 22.21 million respectively. The technology to 

support 0.1 degrees (sun sensors) is different from that to 

support 0.001 degrees (star trackers). However, current 

COTS quotations (e.g. Blue Canyon technologies XACT) 

show that it costs ~$100,000 for a nanosat star tracker 

system. Integration may cost a few additional thousands 

but estimating it to $18 million more sounds a bit too 

much.  

 

The SSCM sensitivity study above highlights the need to 

have cost models that are more sensitive to different 

technologies and their associated complexities. 

Complexity and risk assessment has been proposed by the 

Aerospace Corporation in the form of their COBRA 

model.  We used the COBRA model in our next study, 

where the methodology and data sets are detailed in ([39], 

[40], [52]). The data set relative to which complexities are 

calculated included 120 DoD and NASA missions from 

after FY89, excluded launch delays or failures and 

projects with heavy international cooperation. Complexity 

drivers include (Table 4 column 1) subsystem technical 

parameters (e.g. mass, power, performance, technology 

choices) and programmatic factors (e.g., heritage, level of 

redundancy, foreign partnership). 

 

Forty such parameters are considered that are either 

continuous (e.g. mass, power), and represent a range of 

values bounded by a minimum and maximum, or discrete, 

such as propulsion type (none, cold gas, monopropellant, 

bipropellant or ion engine) that represent a finite number 

of choices.  

 

For our smallsat case study, the factors corresponding to 

spacecraft complexity, as they proposed, are listed in 

Table 4 along with the minimum and maximum value that 

the component takes within their data set. The column 

‘data’ represents the technical input parameters from a 

candidate nano-satellite which will be a part of a DSM 

that is tasked to measure the Earth’s reflectance at 

different 3D angles from the same ground spot as it 

formation flies in LEO ([53],[54],[55]). For each factor, 

the complexity of the nanosat is calculated as a 

percentage of where the data point corresponding to the 

nanosat lies with respect to the data points for all the other 

space missions considered. For discrete data, the discrete 

rank of the data is assessed and then converted into a 

percentage. The average complexity of the proposed 

nanosat is calculated to be 21.64%. 
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Table 4: Cost estimated for a spacecraft as a function 

of the relative complexity of its components with 

respect to components used in previous missions, 

based on the Aerospace Corporation’s Complexity 

Based Risk Assessment (COBRA) model. Inputs (Data 

in Column 3) are from a candidate nanosatellite 

mission 

 
 

 

The map between complexity percentile and required 

mission cost and development time for successful 

missions (green triangles) is shown in Figure 8 using a 

green trend line. The missions plotted are among the 120 

studied missions and equations are mentioned within the 

figure.  COBRA’s developers argue that if missions are 

attempted cheaper than or faster than this model predicts, 

then there is a large probability of failure as highlighted 

by the red and yellow crosses on Figure 8. Using the 

above model, the estimated cost for our candidate nano-

satellite (10 kg) mission is $35.824 million and the 

estimated development time is 35.074 months. The high 

cost is in keeping with the intuition expressed in the data 

collection section that the cost of LEO small satellites are 

driven more by technology than mass, so the utility of 

shrinking the satellite should be critically assessed and 

avoided if the mission technology is very state of art. In 

such cases, micro satellites would win the performance to 

cost ratio battle. 

 

 

 
Figure 8: Predicted mission cost and development time 

as a function of relative mission complexity with 

respect to other missions evaluated by the Aerospace 

Corporation [39], [40], [52]. Mission complexity is a 

function of component complexities as calculated in 

Table 4. The candidate mission is a LEO satellite 

measuring passive Earth reflectance as part of a DSM 

 

We ran a sensitivity analysis for the COBRA model by 

varying the deltaV and pointing accuracy required by the 

candidate satellite. It does a great job in predicting the 

increase in costs from 1 degree to 0.01 or 0.1 degree, by 

Factor Min Max Data Complex%

Payload Mass 0 6065 5 0.082440231

Payload Avg Power 0 6000 5 0.083333333

Payload Peak Power 0 13025 10 0.076775432

Payload DR 0 304538 2.34E+05 76.7063552

# Payload 0 23 0 0

Data Volume 0 21168000 10091520 47.67346939

Foreign Partnership 0 5 5 100

Design Life 0 240 2 0.833333333

Launch Margin 0 2 0 0

Launch Mass 17 18189 11 -0.03301783

Sat Mass 17 16329 11 -0.036782737

Bus dry mass 15 10264 10 -0.048785247

S/C heritage 0 100 0 0

Radiation 0 600 0 0

Redundancy 0 100 0 0

Orbit 0 5 1 20

BOL Power 12 12500 15 0.024023062

Orbit Ave Power 3 5342 7 0.074920397

EOL Power 3 9960 3 0

Solar Array Area 0 175 0.01 0.005714286

Solar Cell Type 0 4 1 25

Battery Type 0 4 1 25

Battery Capacity 1 1222 10 0.737100737

# Articulated Struct 0 13 0 0

# Deployed Structures 0 22 0 0

Solar Array config 0 3 0 0

Structures 0 3 0 0

ADCS type 0 6 3 50

Pointing Accuracy 1.90E-06 20 0.01 1.00E+02

Pointing Knowledge 1.90E-06 20 0.005 1.00E+02

Slew Rate 0 36 1.00E-03 0.002777778

#Thrusters 0 38 12 31.57894737

Propulsion Type 0 5 1 20

Delta V 0 5845 40 0.684345595

Comm Band 0 6 6 100

Downlink DR 1 1460926 1200000 82.13967178

Uplink DR 0 40000 1.00E+03 2.5

Transmitter Power 1 519 30 5.598455598

Central Proc 0 1600 1000 62.5

Software Code 2 1496 30 1.87416332

Flight SW Reuse 0 90 25 27.77777778

Data Storage 0 3.00E+06 1.50E+06 50

Thermal Type 0 4 0 0

Average 21.64558227

Cost 35.82402341

DevTime 35.07406982
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estimating a $ 200-250 increase. It overshoots the COTS 

quotations by a slight margin but is certainly better than 

the SSCM estimate of $ 18 million more. When the 

required delta-V is increased from none to 40 m/s to 80 

m/s to 120 m/s, the respective costs are estimated to be 

FY97 $ 35.79, 35.82, 35.85 and 35.88 million. Quotations 

from a 3D cold gas propulsion system printing company 

called AustinSat revealed that their 1U propulsion unit 

capable of providing 40 m/s of delta V costs $100,000 

with 6DOF thrusters included and would scale almost 

linearly as more 1U units are added for 40 m/s of more 

delta-V. The COTS systems therefore cost more than 

what the COBRA model predicts. The model can thus be 

improved and made more suitable for COTS-supported 

small satellites if COTS data and figures were included in 

the data set to calculate complexity. Since we do not have 

the data set (only the published Figure 8), we could not 

make the changes.  

 

Since many small satellite missions are collaborations 

between many organizations, the COBRA model could be 

improved by adding a foreign partnership complexity 

factor that captures the number of collaborators, not just 

the nationality. For example, a recent paper [56]  

formulated a data supported method of capturing 

international cooperation related complexity using 

cyclometric  complexity where CGF = 0.917 + 

0.0575*CyclometricNumber and CyclometricNumber = 

f(nodes, edges, outputs).  

  

 
Figure 9: Cost growth required to support increasing 

TRL for any component as published in [57] 

 

 

Small satellites are always pushing the boundaries of 

technology. It is very probable that some of its component 

values will fall out of range available from past missions. 

In such a case, cost models of TRL transition such as the 

one shown in Figure 9 [57] should be incorporated into 

the COBRA model for the relevant factors. Although 

TRL transition correlates to the spending, it does not 

follow traditional 80-20 rule. The COBRA model also 

does not capture the structural complexity of a small, 

tightly packed satellite which has been theoretically 

shown to drive development costs. Structural complexity 

can be quantified using a simple framework shown in 

Figure 10 ([35], [34]) and can be easily introduced in the 

COBRA model via a new factor and recalculating the data 

fit.  

 

Capturing the above development costs is important for 

small satellites whose costs are driven more by 

technology than by mass. Again, since we do not have the 

data set (only the published Figure 8), we could not make 

the changes. 

 

 
Figure 10: Structural complexity metric introduced 

and validated in [35] and [34] 

 

5.  CONCLUSIONS 

  

We identify three major problems with current cost and 

risk models that limit their direct application to estimating 

the costs of DSMs. They are the absence of reliable 

learning curve factors, small satellite (<20 kg) costing 

tools and operations costing. Existing models and 

methodologies that may be applicable in part to DSMs 

have been identified and presented using an extensive 

literature survey. We selected some appropriate methods 

and applied them to estimate the cost of small satellites 

and small satellite DSMs. The exercise helped us point 

out valuable insights and/or inconsistencies in the results 

with respect to the data. We also suggest methods to 

modify the models so that they become more suitable for 

small satellite DSMs.  

 

As future work, the operations cost model and dynamic 

complexity of the mission is expected to be captured by a 

Systems Dynamics Model.  Results from model 

simulations can provide insight into the effect of design 

and operation decisions on lifecycle cost and risk, 

expected to improve upon the Monte Carlo results. The 

model results can guide the trade-off of cost with 

performance and can help in the selection of a final point 

design for any given DSM.  



14 

6.  ACKNOWLEDGEMENTS 

 

The authors are grateful to the following people for very 

useful discussions on the topics presented in this paper: 

Steve Tompkins, Charles Gatebe and Robin Mauk from 

NASA Goddard Space Flight Center, Tom Segert from 

Berlin Space Tech, Volker Gass from EPFL/Swiss Space 

Agency and Daniel Selva from MIT. Part of this study 

was performed under internal NASA GSFC funding. 

 

REFERENCES 

 

[1] S. Nag and L. Summerer, “Behaviour based, 

autonomous and distributed scatter manoeuvres for 

satellite swarms,” Acta Astronaut., vol. 82, no. 1, pp. 

95–109, Jan. 2013. 

[2] M. G. O’Neill, H. Yue, S. Nag, P. Grogan, and O. de 

Weck, “Comparing and Optimizing the DARPA 

System F6 Program Value-Centric Design 

Methodologies,” in Proceedings of the AIAA Space 

Conference, Anaheim, California, 2010. 

[3] R. Shishko and R. Aster, “NASA systems 

engineering handbook,” NASA Spec. Publ., vol. 

6105, 1995. 

[4] H. Apgar, D. Bearden, and R. Wong, “Cost 

modeling,” Space Mission Anal. Des. 3rd Ed El 

Segundo Calif Microcosm Press Kluwer Acad. Publ., 

1999. 

[5] L. P. Sarsfield, The Cosmos on a Shoestring. RAND 

Corporation, 1998. 

[6] O. Brown, P Eremenko, “The Value Proposition for 

Fractionated Space Architectures,” in AIAA-2006-

7506, San Jose, California, 2006. 

[7] R. Sandau, “Status and trends of small satellite 

missions for Earth observation,” Acta Astronaut., 

vol. 66, no. 1, pp. 1–12, 2010. 

[8] National Research Council, The Role of Small 

Satellites in NASA and Noaa Earth Observation 

Programs. National Academies Press, 2000. 

[9] M. N. Sweeting, “Why satellites are scaling down,” 

Space Technol. Int., pp. 55–59, 1991. 

[10] H. J. Kramer and A. P. Cracknell, “An overview of 

small satellites in remote sensing*,” Int. J. Remote 

Sens., vol. 29, no. 15, pp. 4285–4337, 2008. 

[11] G. Konecny, “Small satellites–A tool for Earth 

observation?,” in XXth ISPRS Congress, 

Commission, 2004, vol. 4, pp. 12–23. 

[12] J. Bouwmeester and J. Guo, “Survey of worldwide 

pico-and nanosatellite missions, distributions and 

subsystem technology,” Acta Astronaut., vol. 67, no. 

7, pp. 854–862, 2010. 

[13] D. Selva and D. Krejci, “A survey and assessment of 

the capabilities of Cubesats for Earth observation,” 

Acta Astronaut., vol. 74, no. 0, pp. 50–68, May 2012. 

[14] S. Nag, J. A. Hoffman, and O. L. de Weck, 

“Collaborative and Educational Crowdsourcing of 

Spaceflight Software using SPHERES Zero 

Robotics,” Int. J. Space Technol. Manag. Innov. 

IJSTMI, vol. 2, no. 2, pp. 1–23, 2012. 

[15] S. Nag, J. G. Katz, and A. Saenz-Otero, 

“Collaborative gaming and competition for CS-

STEM education using SPHERES Zero Robotics,” 

Acta Astronaut., vol. 83, no. 0, pp. 145–174, Feb. 

2013. 

[16] Y. Xue, Y. Li, J. Guang, X. Zhang, and J. Guo, 

“Small satellite remote sensing and applications–

history, current and future,” Int. J. Remote Sens., vol. 

29, no. 15, pp. 4339–4372, 2008. 

[17] G. Skrobot and R. Coelho, “ELaNa – Educational 

Launch of Nanosatellite: Providing Routine 

RideShare Opportunities,” AIAAUSU Conf. Small 

Satell., Aug. 2012. 

[18] A. Marinan, A. Nicholas, and K. Cahoy, “Ad hoc 

CubeSat constellations: Secondary launch coverage 

and distribution,” in 2013 IEEE Aerospace 

Conference, 2013, pp. 1–15. 

[19] L. Rosenberg, J. Hihn, K. Roust, and K. Warfield, 

“Parametric Cost Modeling of Space Missions Using 

the Develop New Projects (DNP) Implementation 

Process,” 1999. 

[20] J. Hihn, L. Rosenberg, K. Roust, and K. Warfield, 

“Cost model validation: a technical and cultural 

approach,” 2001. 

[21] K. Warfield and K. Roust, “The JPL Advanced 

Projects Design Team’s Spacecraft Instrument Cost 

Model: an Objective, Multivariate Approach,” 1998. 

[22] O. Younossi, M. A. Lorell, K. Brancato, C. R. Cook, 

M. Eisman, B. Fox, J. C. Graser, Y. Kim, R. S. 

Leonard, S. L. Pfleeger, and J. M. Sollinger, 

“Improving the Cost Estimation of Space Systems. 

Past Lessons and Future Recommendations,” 2008. 

[23] M. V. Arena, Impossible Certainty: Cost Risk 

Analysis for Air Force Systems, vol. 415. Rand 

Corporation, 2006. 

[24] L. A. Galway, Subjective probability distribution 

elicitation in cost risk analysis: A review, vol. 410. 

Rand Corporation, 2007. 

[25] B. Fox, K. Brancato, and B. Alkire, “Guidelines and 

metrics for assessing space system cost estimates,” 

RAND Corporation, 2008. 

[26] D. Selva, “Rule-based system architecting of Earth 

observation satellite systems,” PhD, Massachusetts 

Institute of Technology, Cambridge, Massachusetts, 

U.S.A., 2012. 

[27] 65 Authors from the Astronautics Community, Space 

Mission Engineering:The New SMAD, First. 

Microcosm Press, 2011. 

[28] A. L. Rasmussen, “Cost models for large versus 

small spacecraft,” in SPIE’s International 

Symposium on Optical Science, Engineering, and 

Instrumentation, 1998, pp. 14–22. 

[29] A. L. Weigel and D. E. Hastings, “Evaluating the 

Cost and Risk Impacts of Launch Choices,” J. 

Spacecr. Rockets, vol. 41, no. 1, pp. 103–110, 2004. 

[30] B. T. Murray, A. Pinto, R. Skelding, O. de Weck, H. 

Zhu, S. Nair, N. Shougarian, K. Sinha, S. 



15 

Bopardikar, and L. Zeidner, “META II Complex 

Systems Design and Analysis (CODA),” DTIC 

Document, 2011. 

[31] L. Dyrud, J. Fentzke, G. Bust, B. Erlandson, S. 

Whitely, B. Bauer, S. Arnold, D. Selva, K. Cahoy, 

and R. Bishop, “GEOScan: A global, real-time 

geoscience facility,” in Aerospace Conference, 2013 

IEEE, 2013, pp. 1–13. 

[32] G. B. Shaw, D. Miller, and D. E. Hastings, 

“Development of the Quantitative Generalized 

Information Network Analysis (GINA) Methodology 

for Satellite Systems,” in Aerospace Conference, 

1999. Proceedings. 1999 IEEE, 1999, vol. 5, pp. 

301–321. 

[33] Jilla, Cyrus D., “A multiobjective, multidisciplinary 

design optimization methodology for the conceptual 

design of distributed satellite systems,” 

Massachusetts Institute of Technology, Cambridge, 

Massachusetts, U.S.A., 2002. 

[34] Aleksandr A. Kerzhner, Michel D. Ingham, 

Mohammed O. Khan, Jaime Ramirez, Javier De 

Luis, Jeremy Hollman, Steven Arestie, and David 

Sternberg, “Architecting Cellularized Space Systems 

using Model-Based Design Exploration,” in AIAA 

SPACE 2013 Conference and Exposition, 0 vols., 

American Institute of Aeronautics and Astronautics, 

2013. 

[35] Kaushik Sinha and Olivier de Weck, “Structural 

Complexity Metric for Engineered Complex Systems 

and its Application,” in Proceedings of the 14th 

International Dependency and Structure Modeling 

Conference, Kyoto, Japan, 2012. 

[36] D. E. Koelle, “Cost Engineering–The new paradigm 

for space launch vehicle design,” J. Reducing Space 

Mission Cost, vol. 1, no. 1, pp. 73–86, 1998. 

[37] O. C. Brown, P. Eremenko, and P. D. Collopy, 

Value-centric design methodologies for fractionated 

spacecraft: Progress summary from phase 1 of the 

DARPA System F6 program. Defense Technical 

Information Center, 2009. 

[38] O. L. De Weck and R. Thompson, “Value Centric 

Risk Management (VCRM).” MIT Internal Report, 

Apr-2010. 

[39] D. Bearden, M. Cowdin, and J. Yoshida, “Evolution 

of complexity and cost for Planetary Missions 

throughout the development lifecycle,” in Aerospace 

Conference, 2012 IEEE, 2012, pp. 1–12. 

[40] D. A. Bearden, “A complexity-based risk assessment 

of low-cost planetary missions: when is a mission too 

fast and too cheap?,” Acta Astronaut., vol. 52, no. 2, 

pp. 371–379, 2003. 

[41] M. Borgeaud, N. Scheidegger, M. Noca, G. 

Roethlisberger, F. Jordan, T. Choueiri, and N. 

Steiner, “SwissCube: The First Entirely-Built Swiss 

Student Satellite with an Earth Observation 

Payload,” in Small Satellite Missions for Earth 

Observation, R. Sandau, H.-P. Roeser, and A. 

Valenzuela, Eds. Springer Berlin Heidelberg, 2010, 

pp. 207–213. 

[42] “Spacecraft Digest from Analytical Graphics Inc.,” 

Analytical Graphics Inc. [Online]. Available: 

http://www.agi.com/resources/downloads/data/space

craft-digest/. [Accessed: 04-Nov-2013]. 

[43] John D. Sterman, Business Dynamics: Systems 

Thinking and Modeling for a Complex World, 5th ed. 

Jeffrey J. Shelstad / McGraw-Hill Higher Education, 

2000. 

[44] A. Clare, “Modeling real-time Human-Automation 

Collaborative Scheduling of Unmanned Vehicles,” 

PhD, Massachusetts Institute of Technology, 

Cambridge, Massachusetts, U.S.A., 2013. 

[45] S. Tompkins, “Distributed Spacecraft Missions.” 

NASA Goddard Space Flight Center, Feb-2013. 

[46] S. Whitley, M. Hahn, and N. Powers, “The 

Incremental Cost of One or More Copies–

Quantifying Efficiencies from Building Spacecraft 

and Instrument Constellations,” in AIAA/USU 

Conference on Small Satellites, 2013, vol. 52, p. 31. 

[47] H. Apgar, D. Bearden, and R. Wong, “Cost 

modeling,” Space Mission Anal. Des. 3rd Ed El 

Segundo Calif Microcosm Press Kluwer Acad. Publ., 

1999. 

[48] S. Nag, “Collaborative Competition for 

Crowdsourcing Spaceflight Software  and STEM 

Education using SPHERES Zero Robotics,” Dual 

S.M., Massachusetts Institute of Technology, 

Cambridge, Massachusetts, U.S.A., 2012. 

[49] S. Nag, I. Heffan, A. Saenz-Otero, and M. Lydon, 

“SPHERES Zero Robotics software development: 

Lessons on crowdsourcing and collaborative 

competition,” in Aerospace Conference, 2012 IEEE, 

2012, pp. 1–17. 

[50] S. Nag, E. Gomez, S. Feller, J. Gibbs, and J. 

Hoffman, “Laser communication system design for 

the Google Lunar X-Prize,” in Aerospace 

Conference, 2011 IEEE, 2011, pp. 1–20. 

[51] S. Janson and R. Welle, “The NASA Optical 

Communication and Sensor Demonstration 

Program,” 2013. 

[52] D. Bearden, “When is a Satellite Mission Too Fast 

and Too Cheap?,” in 2001 MAPLD International 

Conference, Maryland, 2001. 

[53] S. Nag, “Design of Nano-satellite Cluster Formations 

for Bi-Directional Reflectance Distribution Function 

(BRDF) Estimations,” AIAAUSU Conf. Small Satell., 

Aug. 2013. 

[54] S. Nag, K. Cahoy, O. de Weck, C. Gatebe, B. 

Pasquale, G. Georgiev, T. Hewagama, and S. Aslam, 

“Evaluation of Hyperspectral Snapshot Imagers 

onboard Nanosatellite Clusters for Multi-Angular 

Remote Sensing,” in Proceedings of the AIAA Space 

Conference, San Diego, 2013. 

[55] S. Nag, C. K. Gatebe, and O. L. De Weck, “Relative 

Trajectories for Multi-Angular Earth Observation 

using Science Performance Optimization,” in IEEE 

Xplore, Aerospace Conference 2014, Big Sky, 

Montana, USA, 2014. 



16 

[56] Patrick K. Malone, “Using System Complexity to 

Increase Cost Estimate Accuracy in Government 

Procurements,” in AIAA SPACE 2013 Conference 

and Exposition, 0 vols., American Institute of 

Aeronautics and Astronautics, 2013. 

[57] Jason Hay, John D. Reeves, Elaine Gresham, Julie 

Williams-Byrd, and Emma Hinds, “Evidence for 

Predictive Trends in TRL Transition Metrics,” in 

AIAA SPACE 2013 Conference and Exposition, 0 

vols., American Institute of Aeronautics and 

Astronautics, 2013. 

 

BIOGRAPHIES 

 

Sreeja Nag is a PhD candidate in 

Space Systems Engineering at the 

Massachusetts Institute of Technology 

and a part-time research fellow at 

NASA Goddard Space Flight Center. 

She has a dual SM Candidate in 

Aeronautics & Astronautics 

Engineering along with Technology & 

Policy at MIT. She has summer research experience with 

NASA JPL in 2008, the European Space Agency (ESTEC) 

in 2010 and led the SPHERES Zero Robotics Program in 

2011. Email: sreeja_n@mit.edu  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jacqueline Le Moigne is the Assistant 

Chief for Technology in the Software 

Engineering Division at NASA 

Goddard where she is currently 

leading a study on Distributed 

Spacecraft Missions. She has 

performed extensive work in 

developing new technologies for remote sensing data 

analysis, e.g., image registration, high-performance and 

onboard processing. She has published over 100 

publications and recently co-edited a book on “Image 

Registration for Remote Sensing.” Email: 

Jacqueline.LeMoigne@nasa.gov 

 

Olivier de Weck is a Professor of 

Aeronautics and Astronautics and 

Engineering Systems at the 

Massachusetts Institute of Technology. 

He is also the Executive Director of 

MIT Production in the Innovation 

Economy (PIE) Study and the Co-

Director, Center for Complex 

Engineering Systems at KACST and MIT.  Email: 

deweck@mit.edu  

 

mailto:sreeja_n@mit.edu
mailto:jacqueline.j.lemoigne-stewart@nasa.gov
mailto:deweck@mit.edu

