
978-1-4577-0557-1/12/$26.00 ©2012 IEEE 1

SPHERES Zero Robotics Software Development: Lessons

on Crowdsourcing and Collaborative Competition

Sreeja Nag

Massachusetts Institute of

Technology,

Cambridge, MA 02139

Email: sreeja_n@mit.edu

Ira Heffan

TopCoder Inc.,

Glastonbury, CT 06033

Email:

IHeffan@topcoder.com

Alvar Saenz-Otero

Massachusetts Institute of

Technology,

 Cambridge, MA 02139

Email: alvarso@mit.edu

Mike Lydon

TopCoder Inc.,

Glastonbury, CT 06033

Email:

MLydon@topcoder.com

Abstract

Crowdsourcing is the art of constructively organizing

crowds of people to work toward a common objective.

Collaborative competition is a specific kind of

crowdsourcing that can be used for problems that require

a collaborative or cooperative effort to be successful, but

also use competition as a motivator for participation or

performance. The DARPA InSPIRE program is using

crowdsourcing to develop spaceflight software for small

satellites under a sub-program called SPHERES Zero

Robotics - a space robotics programming competition.
The robots are miniature satellites, called SPHERES, that

operate inside the International Space Station (ISS). The

idea is to allow thousands of amateur participants to

program using the SPHERES simulator and eventually

test their algorithms in microgravity. The entire software

framework for the program, to provide the ability for

thousands to collaboratively use the SPHERES simulator

and create algorithms, is also built by crowdsourcing.

This paper describes the process of building the software

framework for crowdsourcing SPHERES development in

collaboration with a commercial crowdsourcing company

called TopCoder. It discusses the applicability of

crowdsourcing and collaborative competition in the

design of the Zero Robotics software infrastructure,

metrics of success and achievement of objectives.

TABLE OF CONTENTS

1. INTRODUCTION ... 1

2. SPHERES .. 2

3. ZERO ROBOTICS HISTORY 3

4. ZERO ROBOTICS WEB ENVIRONMENT........... 4

5. INNOVATION USING COMPETITIONS 5

6. ZERO ROBOTICS WEB INTERFACE

DEVELOPMENT METHODOLOGY 7

7. ZERO ROBOTICS CROWDSOURCING

CONTESTS INFRASTRUCTURE 9

8. ZERO ROBOTICS CROWDSOURCING

CONTEST RESULTS .. 11

9. CONCLUSION .. 16

10. REFERENCES .. 17

13. BIOGRAPHY .. 18

1. INTRODUCTION

The term ócrowdsourcingô was introduced by Jeff Howe

in 2006 in a Wired magazine article. He later went on to

define the term as: óSimply defined, crowdsourcing

represents the act of a company or institution taking a

function once performed by employees and outsourcing it

to an undefined (and generally large) network of people in

the form of an open call[1]. Most generally, a person or

organization with a problem invites a crowd to come up

with solutions and offers incentives for contribution.

Crowdsourcing has been classified into various typologies

based on the aims of practice [2]: Problem solving (crowd

wisdom), creative input (crowd creation), opinion polling

(crowdvoting), outsourcing tasks (crowd production) and

raising money (crowdfunding). The effort described here

focused on creative input, problem solving and

outsourcing for spaceflight software development in the

context of the SPHERES Zero Robotics Program ï a joint

effort between MIT, TopCoder, and Aurora Flight

Sciences, supported by NASA and DARPA.

SPHERES Zero Robotics is a DARPA-initiated endeavor

under the umbrella program called InSPIRE to develop

spaceflight software by crowdsourcing. It is a robotics

programming competition where students learn to write

programs that control a satellite in space using a web

browser. The robots are miniature satellites called

SPHERES (Synchronized Position Hold Engage Reorient

Experimental Satellites) ï an experimental testbed

developed by the MIT Space Systems Laboratory (SSL)

operating on the International Space Station (ISS) to test

control and navigation algorithms in microgravity. The

participants compete to win a technically challenging

game by programming their strategies into the SPHERES

mailto:sreeja_n@mit.edu
mailto:IHeffan@topcoder.com
mailto:alvarso@mit.edu
mailto:MLydon@topcoder.com

2
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

satellites. The game includes command and control

problems of interest to MIT, DARPA and NASA.

Students use either a graphical editor or a C editor to

write code, and then simulate their program and see the

results in a flash animation. The simulation uses a high-

fidelity 3D model of the SPHERES satellites. The

astronauts run the final robotics competition on the ISS

and interact with participating students via a live video

broadcast in a large event at MIT, webcast live to all

participants so that remote viewing is possible. The

structure of the tournament includes both competition and

collaboration in order to meet the educational goals of the

program. It is this mix that enables participants --

amateur developers assisted by mentors -- to create

competitive solutions to the specific tasks outlined in the

game. The software framework to enable the above

process, i.e. allow crowds of students to use the

SPHERES simulator, write spaceflight-capable programs

and interact/collaborate with each other is built using

TopCoder crowdsourcing contests that also use a mix of

competition and collaboration. TopCoder is a commercial

company that uses a mix of competition and collaboration

within their online community of, over 300,000

developers, who voluntarily register on their website, to

make scalable, cloud-based software systems (described

in detail in Sections 7 and 8).

Figure 1: Zero Robotics Architecture.

Spaceflight software development via Zero Robotics,

therefore, occurs for existing spaceflight hardware and in

two stages, as shown in Figure 1: (1) Building the web-

based development environment for the programming

competitions ï circled in red - (by leveraging a crowd of

thousands of software developers) and (2) the

programming competitions themselves ï within the blue

box - (when thousands of amateur participants contribute

to writing SPHERES software). Both stages are

demonstrations of crowdsourcing using different classes

of participants and with different objectives. This paper

describes stage 1 of the process.

The primary goal of the Zero Robotics tournaments is

Science, Technology, Engineering, and Math (STEM)

education and the secondary goal is to develop spaceflight

algorithms (specifically for SPHERES) at the same time.

In Figure 1, the students who participate in the

tournaments are the input into the Zero Robotics ósystemô

and the output are the mentioned objectives, STEM

education and satellite software. The ósystemô includes a

game which is available through the ZR Web Interface,

which in turn serves as tools for students to achieve the

Zero Robotics objectives. Thousands of developers

competed in TopCoder contests to creatively design a web

interface for these students (crowd creation) and assemble

the software components to build a robust framework to

allow satellite control (crowd production). This paper

discusses the process of developing the platform to

organize the tournaments and release the games, referred

to as the framework development effort, with the intent of

making MITôs SPHERES simulator available and

accessible and providing a community platform for

crowds to interact and write spaceflight-capable software

for SPHERES. It uses data from the development effort to

discuss the role of competitions in enabling space

research amateurs, from non-technical personnel to

software developers, to create space mission software,

and the subsequent value gained by the space community.

2. SPHERES

The SPHERES program began in 1999 as part of an MIT

Aero/Astro undergraduate class. Prototypes were built by

the student class in 2000, flight satellites were delivered

in 2003, and launched to the ISS in 2006 [3]. SPHERES

became one of the first educational programs that

launched student-designed hardware to the ISS.

SPHERES consists of a set of tools and hardware

developed for use aboard the ISS and in ground-based

tests: three nano-satellites, a custom metrology system

(based on ultrasound time-of-flight measurements),

communications hardware, consumables (tanks and

batteries), and an astronaut interface. They operate aboard

the ISS under the supervision of a crew member (Figure

2).

Figure 2: SPHERES operates 3 satellites aboard the

ISS (astronaut and MIT alum Gregory Chamitoff)

The ground-based setup consists of a set of hardware

analogous to what is in the Station: three nano-satellites, a

metrology system with the same geometry as that on the

ISS, a research oriented GUI, and replenishable

3
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

consumables. The SPHERES satellites implement all the

features of a standard thruster-based satellite bus. The

satellites have fully functional propulsion, guidance,

communications, and power sub-systems. These enable

the satellites to maneuver in six degrees of freedom (6-

DOF), communicate with each other and with the laptop

control station, and identify their position with respect to

each other and to the reference frame. The laptop control

station (an ISS supplied standard laptop) is used to collect

and store data and to upload new algorithms. SPHERES

uploads new algorithms (ahead of time) and downloads

data (after the session) using the ISS communications

system.

Figure 2 shows a picture of a SPHERES satellite and

identifies its main components. Physical properties of the

satellites are listed in

Table 1.

Diameter 0.22 m

Mass (w/tank & batteries) 4.3 kg

Max linear acceleration 0.17 m/s
2

Max angular acceleration 3.5 rad/s
2

Power consumption 13 W

Battery lifetime (replaceable) 2 hours

Table 1: SPHERES Physical Properties

Figure 3: A SPHERES Satellite

SPHERES was designed to be a facility aboard the ISS,

not just a single experiment, by following a set of design

principles learned from previous MIT SSL experience [3].

To provide the ability to involve multiple scientists in a

simple manner, a SPHERES Guest Scientist Program was

created [4]. This program consists of a test development

framework, a robust and flexible interface to the

SPHERES flight software, a portable high-fidelity

simulation, two laboratory test beds and data analysis

utilities, and supports the efforts of geographically

distributed researchers in the development of algorithms.

The Zero-Robotics program expands the Guest Scientist

Program with a simplified interface so that students at

many different grade and skill levels can program the

satellites.

3. ZERO ROBOTICS TOURNAMENTS

The Zero Robotics (ZR) competitions draw significant

inspiration from FIRST Robotics [5] and shares common

goals including building lifelong skills and interest in

science, technology, engineering, and math through

project-based learning. FIRST Robotics concentrates

heavily on the development of hardware, has a

registration fee and does not have any space-related

components. Since SPHERES concentrates on the

development of software, Zero-Robotics complements

FIRST Robotics by providing students an avenue to

further develop their software skills, with the incentive

that the software they develop will be tested by robots and

astronauts in space at no cost to participants.

In fall 2009, the SSL conducted a pilot program of the

Zero Robotics competition with two schools/10 students

from northern Idaho [6]. In 2010, Zero Robotics was

a component of NASA's Summer of Innovation, a

nationwide program targeted at encouraging STEM

education for middle school students. During this

competition, 10 teams and over 150 students from schools

in the Boston area worked for five weeks to program the

SPHERES to compete in an obstacle course race. In the

fall of 2010, Zero Robotics conducted a nationwide pilot

tournament for high school students named the Zero

Robotics SPHERES Challenge 2010. Over 200 students

from 19 US states participated as part of 24 teams. The

objective of the game was to complete the assembly of a

solar power station by maneuvering a satellite to dock

with a floating solar panel and then bring it back to the

station to finish the mission before the opponent does.

In the fall of 2011, the ZR tournament grew again and had

145 teams participating from all over the USA and select

countries in Europe. The objective of the 2011 game was

to navigate the satellite to collect a variety of tools, mine

asteroids by spinning on it or revolving around it and

depositing the collected ore in mining stations. Twenty-

seven of the teams that participated will be able to see

their code run on the ISS. While previous competitions

used a prototype web interface, 2011 used a web interface

and the integrated development environment to support

this growth in participation, and for the first time the

infrastructure for the competitions was itself developed

using crowdsourcing. We expect that this infrastructure

will enable to the program to scale to many more teams in

the future. While this paper deals with the development of

the infrastructure only, there is separate literature

available that reviews the Zero Robotics tournaments and

their impact on crowdsourcing and STEM education [7].

Thrusters

Ultrasound

Sensors

Pressure

Regulator

Battery

Pressure

Gauge

Control Panel

4
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

4. ZERO ROBOTICS WEB

ENVIRONMENT

Each Zero Robotics tournament has included several

competition rounds in which students play the same or

different games against each other. Student teams submit

an application on http://zerorobotics.mit.edu/. Upon

acceptance, they can create, edit, share, save, simulate and

submit code using the ZR website. The components of the

web environment available to the students will be

explained briefly in this section; more detail can be found

in previously published Zero Robotics literature [7]. Apart

from the game, animation and the graphical editor, all the

components described below were built using TopCoder

crowdsourcing contests.

4.1. The Zero Robotics Game

For each tournament, the Zero Robotics development

team designs a different game. The game has the

following goals, developed from the lessons learned

during previous instantiations of Zero Robotics

tournaments and constraints of the SPHERES hardware

and software.

¶ A game with relevance to state-of-the-art

research with SPHERES, so that the work of

students can contribute to future research at MIT,

NASA, DARPA, and other research centers.

¶ Each team controls one SPHERES satellite

during the game which involves two teams.

Each Zero Robotics game is designed, balanced, tested,

programmed into the SPHERES Zero Robotics API by

MIT and made available on the Integrated Development

Environment on the ZR website. The game design and

testing was not developed through crowdsourcing.

4.2. Software Architecture

In the past, programming the SPHERES satellites

required users to have access to the compilers for the

SPHERES processor and familiarity with the Guest

Scientist Program. This was not practical to engage large

numbers of students of high school age and below.

Instead, MIT and TopCoder have developed a web-based

interface to program the satellites which makes use of the

same SPHERES high-fidelity simulation that is used to

develop flight software.

The programming takes place via a web-based GUI,

which provides a simplified interface to the Guest

Scientist API functions and enforces constraints that

guarantee compatibility with the SPHERES compilers.

Students have access to a text based editor as well as a

graphical editor, for those with little or no prior

programming experience. A distributed computation

engine, hosted on Amazon EC2 virtual machines

compiles the user code, links it with the core SPHERES

software, and performs a full simulation of the program..

An Adobe Flash-based visualization creates an animated

representation of the results. The code programmed by the

students via the web interface can be executed in the

SPHERES hardware. The flow of information in the ZR

software infrastructure is shown in Figure 4. The user

code is transmitted to the web app which launches a

simulation instance on the óFarmô which on completion

returns the results to the web app and finally the browser,

then rendered in the form of an animation.

Figure 4: ZR Software Architecture

Figure 5: Example of a ZR Animation

Users write code inside a main function called óZRUser()ô

available in each project. ZRUser() is called at every

iteration of the satellite control cycle (approximately once

per second). User defined procedures are all called inside

this main which has as its inputs, the position, velocity,

attitude and attitude rates of each of the satellites and the

time since the game begun. The code within and called by

ZRUser() is inserted into a pre-defined template and

called by the ZR simulation engine to model control of

the SPHERES satellites.

4.3. Graphical Editor

The ZR graphical editor allows users with little or no C

experience to write code using drag-and-drop

programming. It is currently possible to see and generate

C-code from the diagram view so that users can initiate

their code with diagrams but can move on to more

complicated code using the C editor. The graphical editor

http://zerorobotics.mit.edu/

5
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

was built by Aurora Flight Sciences and integrated into

the overall software framework of Zero Robotics using

TopCoder crowdsourcing contests.

4.4. Team and Project Management
Tools

In the ZR tournament, teams are organized into two types

of members: team leads and team members, with different

permissions for each role. The ZR website provides users

with the tools that they need to create, edit, share with

others, compile, simulate and save all their projects and

results. The ZR simulation allows users to tweak different

game parameters and choose simulation settings so that

they can test different parts of their code independently.

They can simulate an individual project, race against

another member of their team or race against standard

players provided by MIT. The simulation also allows

students to control the speed of the game to show the

motion in real time or up to 10 times faster. In a formal

competition, these settings are fixed by MIT and the

purpose of the simulation is to provide ample

opportunities to test different strategies and finalize a

robust submission.

During the tournaments, teams are given the opportunity

to challenge other teams for informal scrimmages. The

website provides the ability to select a user project and

invite other teams to race their projects against the

selected one ï called a óchallengeô. Teams can accept or

reject challenges using the provided UI and view the

results, animations and leader boards for each challenge

that they participated in. A simple interface is available

to teams for submitting a project as an entry into a formal

competition. MIT runs automated simulated competitions

using these submitted projects as elimination rounds.

Teams that reach the final round have their programs run

on the SPHERES satellites aboard the ISS with the help

of astronauts.

The Zero Robotics website, the IDE and the all the

management tools were and are being developed using

crowdsourcing contests supervised by MIT and

TopCoder. More detail about the contests and quantitative

results is provided later in the paper.

5. INNOVATION USING

COMPETITIONS

5.1. Historical Usage

Challenging crowds to compete to achieve a difficult goal

by providing the incentives of prizes has a long history

and has led to many successful competition solutions

(hence, the terms óchallengesô and ócompetitionsô will

often be used interchangeably). In 1714, the English

parliament, seeking to solve the difficult problem of

accurately determining shipsô longitude at sea, created a

Board of Longitude to oversee the offer of a prize of

20,000 pounds to anyone who could solve the problem.

Parliament could have directly funded astronomical

research efforts, however, instead they chose to offer a

prize to anyone who could solve the problem. John

Harrison, a self-taught clock maker developed an

improved clock design that would be accurate at sea. [8]

In 1775, a prize of 100,000 francs was offered by the

French Academy of Sciences for the production of alkali

soda ash (sodium carbonate) from salt (sodium chloride)

[9]. A surgeon, Nicholas Leblanc, developed a process

that some have since characterized as the beginnings of

the modern chemical industry
1
. In 1919, a $25,000 prize

was offered by hotel magnate Raymond Orteig to the first

person to fly non-stop between New York and Paris. In

1927, Charles Lindbergh won that prize, landing 2½

hours ahead of schedule [10].

5.2. Recent Usage

A more recent example of the use of large-scale

innovation tournaments in aerospace include the X-Prize

competition. On October 4, 2004, the X PRIZE

Foundation awarded a $10 million prize to Scaled

Composites for their craft SpaceShipOne [11]. Aerospace

designer Burt Rutan and financier Paul Allen led the first

private team to build and launch a spacecraft capable of

carrying three people to 100 kilometers above the earth's

surface, twice within two weeks, the first humans to

achieve this feat.

U.S. Government agencies can use challenges to reach out

to thousands of citizens, which is why the White House

has been encouraging agencies to consider the use of

challenges as a policy tool. At the outset of his

Administration, President Barack Obama signed the

Memorandum on Transparency and Open Government,

committing the Administration to creating a more

transparent, participatory, and collaborative government.

In Sept. 2009, the President released his ñStrategy for

American Innovationò calling for agencies to increase

their ability to promote and harness innovation by using

policy tools such as prizes and challenges [12]. On Dec.

8, 2009, the Director of the Office of Management and

Budget (OMB) issued the Open Government Directive,

which required executive departments and agencies to

take specific actions to further the principles established

by the Presidentôs memorandum, including to develop an

Open Government Plan that should ñinclude innovative

methods, such as prizes and competitions, to obtain ideas

from and to increase collaboration with those in the

1
 It is interesting to note, however, that both Harrison and

Leblanc had trouble collecting on their prizes, Harrison due to

the resistance of the astronomical establishment that was holding

out for an astronomical solution and Leblanc due to the French

Revolution.

6
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

private sector, non-profit, and academic communities

[13]. In January 2011, the America COMPETES Act [14]

was reenacted, which authorized all government agencies

to conduct challenges and competitions.

Challenges must be designed to meet their intended goals.

There is no single type of challenge that can fulfill all

needs. A program that is solely intended to educate the

public about a topic will be designed differently than a

challenge that is created to obtain an innovative solution.

To explore these differences, NASA created the NASA

Tournament Lab (NTL) in collaboration with Harvard

Business School and TopCoder to use open innovation

challenges to solve problems within the NASA scientific

and research community, and to reach beyond the walls of

the research centers and engage the world to help solve its

challenging and complex problems [15]. Some examples

of successfully crowdsourced (crowd wisdom) NTL

problems are:

¶ NASA required the development of a robust

software algorithm that would efficiently recognize

vehicles in aerial images [16]. A set of 1000 images

containing vehicles and 3000 images containing

only background were provided as test cases. The

algorithm submissions were tested against a larger

set of data. After the problem had been selected and

framed, a three-week competition was held on the

TopCoder platform. During the competition, 139

programmers from around the world participated by

submitting 549 total submissions. The preliminary

data analysis by the NASA team showed that the top

five solutions were a significant improvement over

their current algorithms, employing ñstate of the art

computer vision methods.ò NASA is currently

working on integrating the winning submissions into

their own solution.

¶ NASAôs Space Life Sciences Directorate required

the development of a software algorithm that would

solve a ñbackpack problem,ò of recommending the

ideal components of the space medical kit included

in each manned space mission [17]. As mass and

volume are restricted in space flight, the medical kit

has to be designed in a way such that both expected

and unexpected medical contingencies can be met

through the resources in the kit as well as be attuned

to the characteristics of the space flight and crew.

The challenge was to develop a software algorithm

that, based on mission characteristics, would

minimize mass and volume and provide the

resources necessary to minimize poor health

outcomes or mission abruption. After the problem

had been selected and framed, a 10 day competition

was held on the TopCoder platform. During those

10 days, 439 programmers from around the world

participated by submitting 5994 program

submissions. The preliminary data analysis by the

NASA team is that the solutions developed by the

leading entries far surpass the current state of the art

internal to NASA in terms of computation time (30

seconds as compared to 3 hours), diversity of

technical approaches and robustness. After the

competition was done, NASA researchers reviewed

the top 5 highest scoring code submissions by

looking at the actual code and documentation and

said that ñThe amount of useful code developed in

such a short amount of time really made us

reconsider some of the ways that we write softwareò

[18]. The NASA team was not able to directly

import the code into their software because their

model was created with the SAS software analytics

package, but they converted elements from the

winning submissions to develop a new algorithm to

design the medical kids used in space missions.

¶ NASA wanted to generate ideas for new

applications to allow exploration and analysis of the

NASA Planetary Data System (PDS) databases -

http://pds.nasa.gov/. While rich in depth and

breadth of data, the PDS databases have developed

in a disparate fashion over the years with different

architectures and formats; thereby making the

integrated use of the data sets difficult.

Consequently, a challenge faced by NASA and the

research community is to maximize the usefulness

of the enormous amounts of PDS data and identify

ways to combine the data that is available to

generate interesting applications (e.g.,

visualizations, analysis tools, educational

applications, mash-ups). The goal of this challenge

was to generate ideas for these applications.

Submissions included a description of the overall

idea, a description of the target audience, the

benefits of the application for the target audience,

the nature of the application (how should the

application be implemented? Overall, submissions

were expected to be around 2-3 pages of text

including figures and tables and images. No code or

software was necessary. Prizes included a $1000

grand prize and 3 $500 runners-up prizes. A $750

ñcommunity choiceò selected by the community

also was awarded. There were over 40 submissions

received, with the winner proposing an application

concept that was focused on a PDS documents

parser, processor and validation tool that could be

used to identify what areas, parameters, and objects

of the planetary systems are well researched and

what objects are ñwhite spots,ò meaning that the

data is sparse and more research is needed [18].

Future competitions will include implementing the

winning idea.

To summarize, competitions have had a long history to

spur innovation and solve problems creatively (crowd

wisdom) and in large numbers (crowd production). The

government and NASA have only recently tapped into the

power of challenges to organize their enormous amounts

http://pds.nasa.gov/

7
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

of information available, identify and solve complex

problems and to democratize the innovation process.

5.3. Collaborative Competition

Competitions can organize individuals to work toward a

common objective with the incentive of a monetary or

non-monetary reward. Individuals with a diversity of

skills can participate in the task, with a self-allocation of

individuals to tasks in which they believe that can be

successful. Collaboration allows individuals towork

together to achieve larger goals. Development through

competitions requires a careful balance of competition

and collaboration to achieve its goals.

While big competitions óchallengeô the public with a

difficult objective, a series of smaller challenges can be

used to engage multiple participants if the challenge

structure includes collaboration. Collaboration among the

participants allows for the accomplishment of larger tasks

by multiple people, and for the performance of each

participant to be improved by learning from others. There

are a number of ways to bring collaboration into a

competitive model, but it is important to retain the

benefits of competition.

6. ZERO ROBOTICS WEB INTERFACE

DEVELOPMENT METHODOLOGY

The Zero Robotics software is being developed using

TopCoderôs methodology of crowdsourcing contests with

the intent of improving the accessibility of MITôs

SPHERES simulator and providing a community platform

for crowds to interact and write spaceflight-capable

software for SPHERES. TopCoder conducts competitions

among members of its world-wide technologist

community to create software and technology solutions.

Problems are posed in an ñopen callò for solution

submissions of a specific type, size, and approximate

complexity, and submissions are judged to determine the

winner, typically with monetary prizes awarded to the

best solutions. For each of these contests, a specification

for the desired deliverables is published along with the

price to be paid for the ñbestò solution that meets

minimum criteria, and in response developers submit the

actual deliverables. Contestants can compete to develop

the best algorithm to solve a particular problem, to

develop a user interface design, the code for a software

component, or to conceive of the best approach to a

business or operational problem or opportunity using

technology. Solution submissions can range from

documents containing ideas, workflow, schematics to

graphic design assets such as user interface designs,

wireframes and story boards to files containing software

code, test data and technical documentation. For many

solutions, standard competition types and deliverables

formats reduce the learning curve for participants.

6.1. Evaluation Criteria

Competition judging methods depend on the type of

competition. For most types of deliverables that can be

reviewed objectively, submissions are peer-reviewed by

historically top-performing reviewers from the

community with a rigorous scorecard, and the winner

selected based on those scores. However, not all

deliverables can be judged objectively. Some other

examples are:

¶ Sponsor of the challenges selects the submission they

believe to be most valuable and most closely meets

the criteria set forth in the challenge.

¶ Client and reviewers select the winner based on their

preferred submission (subjective); e.g. business

requirements contests.

¶ Automated testing and scoring is used to evaluate;

e.g. algorithm development contests can be judged

based on the performance and/or accuracy of the

algorithm using a specified test data and scoring

method focused on the desired results.

In each of these scenarios, the evaluation method needs to

be clear and objective, and the results transparent for all

participants.

6.2. Incentive Structure

The TopCoder web site is designed to identify, promote,

and reward the best participants in each category of

competition. Cash prizes are awarded to winners and

runners-up, and competitor results are posted on the site

for public recognition of outstanding performance. A

memberôs username is displayed on the site in a color that

reflects their rating, so that their rating becomes a part of

their online identity [21]. Detailed, publicly-available

statistics above are kept on the web site so that all

participants can see how they compare to others such as

biography, TC contest statistics, reliability rating,

performance and scores from all categories of contests

participated in. This allows each member to judge the

level of competition in a potential contest and determine

the amount of effort he will put in accordingly. For each

contest type, there are both short-term prizes and long-

term incentives. Competitions typically include prizes for

1
st
 place and at least one runner-up. Some contests also

include milestone prizes that are paid based on mid-

competition deliverables. In addition, there may be

incentives for submission reliability over time and for

continued participation, like the ñDigital Runò prize pool.

These are all in addition to opportunities for additional

participation as a reviewer or co-pilot based on historic

competition success.

6.3. Benefits of Competition in
Development

The competition-based development model is successful

for a number of reasons. Some of them are that:

8
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

1. The development conducted through competitions

does not depend on the knowledge or availability of

any particular individual as a single point of failure.

2. There are innovation benefits that come from

reaching out to a global pool of solvers who have a

diversity of skills and experience, and bring their

creativity to a particular task at hand.

3. The contest judging process inherently includes a

detailed review process for assuring the quality of

work.

4. Individuals self-select the tasks on which they

choose to perform, and for which they are motivated

and believe that they have the ability to be

successful.

5. Winning submitters are paid a fixed price for the

deliverables, and are paid only if their deliverables

meet minimum criteria and are delivered by the

deadline.

TopCoderôs platform has hundreds of new registrants

each week and thousands of active participants. The

platform is therefore likely to have individuals with the

necessary skills and willingness to participate in a given

technology-related task. Of course, these significant

benefits come with some requirements. Problems must be

presented in a format that is suitable for competition.

TopCoder has had to develop expertise in developing the

formulation of problems and presenting them to a

community so that they can be solved in a systematic

manner. Also development environments and test data

must be provided in a way that is accessible to the

community.

6.4. Benefits of Collaborative
Competition in Development

The collaboratively competitive development of Zero

Roboticsô platform, as per the TopCoder methodology, is

based on competition, in that there are competitions for

each design and development task. These competitions

offer both monetary and non-monetary incentives for the

participants. Participation in competitions are entirely

voluntary and allows the participant complete flexibility

and control over their choice of projects. Incentive

structures for crowdsourcing challenges in the form of

prizes can achieve societal influence in seven different

ways [19]:

1. Identifying excellence

2. Influencing public perception

3. Focusing communities on specific problems

4. Mobilizing new talent

5. Strengthening problem-solving communities

6. Educating individuals

7. Mobilizing capital

While each challenge is inherently competitive, the

overall effort also includes a significant amount of

collaboration, both structured and unstructured.

¶ Much of the collaboration in TopCoder is structured

collaboration, i.e. the TopCoder process dictates

how that collaboration takes place. Portions or all

of the deliverables created in one competition (e.g.,

software architecture designs) are used as

specifications for another competition. The

deliverables are created in a predetermined format to

make the communication of information as seamless

as possible. In addition, the architects and reviewers

in a competition work with the developers during

the competition to answer questions and to finalize

the deliverables. A ñfinal fixò stage of the

competition requires a developer to make changes in

response to minor errors or omissions identified by

the reviewers. This is similar to code reviews

conducted by many development organizations, but

takes place at each stage of the software creation

lifecycle, not just coding.

¶ With respect to unstructured collaboration,

discussion forums enable participants to ask

questions and discuss the requirements with the

architects, clients, and each other. This discussion

often adds additional detail or relieves ambiguity in

the contest specification. It also provides a record

of the reasoning for the design and implementation

decisions that are discussed. Even while members

compete against one another, their interests in

algorithms and software brings them to common

ground and members are typically willing to help

each other as well as teach and advise beginners.

The general discussion forums are home to a very

active level of interaction about topics of interest to

this community.

The structured collaboration in the TopCoder model is

important because it enables individuals with different

skill sets to address different parts of the problem to be

solved and enables distributed development. In other

words, it allows a ñteamò to form in order to solve a

complex problem without requiring the team members to

establish relationships with each other. It allows team

members to pick their contribution based on their interests

and skills. Additionally, the structure of the collaboration

process makes each team memberôs contribution and

interaction transparent to the other participants. The

documentation developed at each stage is critical because

the members of the team can keep changing, so the

combined knowledge exists not in the experience of the

individuals alone but in the documentation and process.

On the other hand, this collaboration structure does add

overhead. Since communication is limited to the written

documentation and the forums, the interface definitions

and documentation are required at every stage.

Collaboration with another individual requires at least

9
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

some written specification of the task, and evaluation of

results. At times, particularly when a small, fast change is

needed, this overhead seems to take longer than it would

if one could just call up the developer on a team and

request the change. However, there is not just one

developer who can make the change, and so the

availability of ótheô developer on the team is not

determinative of whether the change can be made.

6.5. Development of Complex Systems

Crowdsourcing is not just for a single problem using a

single contest to solve it. Large problems can also be

broken down into smaller sub-problems that each can be

solved by a contest. For example, a computational

problem might require an algorithm competition to obtain

an algorithm that would solve a problem, and a software

component design competition and a software component

development competition after that to implement the

result of the algorithm competition in a useful framework

for use by NASA.

On the TopCoder platform, development projects

typically are planned out in ñGame Planò schedules that

show the series of competitions scheduled and estimated

costs for delivering them. The game plans do not have

particular individuals associated with each task, rather the

competitors decide whether to participate in the contest

for each set of deliverables. Predictions can be made

based on past history and the competition parameters

(e.g., competition type, pricing, timing) what the

likelihood of successful completion will be during the

competition lifespan.

For a large, complex project such as the Zero Robotics

competition and development environment, we divided

the project into several modules and used the traditional

Software Development Life Cycle (SDLC) for each

module. Each phase of the SDLC loop is a crowdsourcing

contest and its outputs are fed into the next phase as input

to the next crowdsourcing contest, as shown in Figure 6.

Parallel development is therefore possible and interface

requirements are very strict (defined by the TC project

manager ï the only managerially hired position in the

entire process) to prevent misfits later.

The top level phases of the lifecycle are:

1. Conceptualization and Specification

2. Architecture

3. Component Production

4. Application Assembly

5. Certification

6. Deployment

A large project is broken into multiple modules that need

to be developed; each module is developed through the

above phases and each phase has one or more contests.

Conceptualization competitions develop Business

Requirements documents and High-Level Use cases as

solutions. These are then provided as inputs to

Specification competitions, which develop Application

Requirements Documents, Use Cases, Activity Diagrams,

and Storyboard and/or Prototypes. These design

specification deliverables are then used in Architecture

competitions to develop Module and System Design

Specifications, Sequence Diagrams, Interface Diagrams,

and Component Design Specifications. Test cases also

may be developed at this time, by conducting testing

competitions. The Component Design Specifications are

used in competitions to design and develop reusable

software components that implement the design. In

Application Assembly, the components are assembled and

the deployment requirements documented. In

Certification, the assembled software is thoroughly tested

through testing competitions and the application is

deployed on a staging server for a final integrated set of

tests. After the completion of all the phases, the solution

is ready for deployment. Figure 6 does not show all of

the competitions currently offered by TopCoder. Neither

is this the only way that crowdsourcing can be used to

develop large, complex systems. Other contests that have

not been shown include algorithmic problem-solving,

graphic design, user interface design, idea generation,

wireframes, prototyping, etc. that might be employed in

the development of a technology solution. Zero Robotics

development included many such contests.

7. CROWDSOURCING CONTEST

INFRASTRUCTURE

Conducting a competition is much more involved than

simply posting the challenge to a web site. Important

elements of the collaborative competitive infrastructure

provided by the TopCoder competition platform used to

develop the ZR web interface are:

1. A web interface to make competitions structured,

organized, compelling and interesting. TopCoder

performs these functions using its website:

www.topcoder.com

2. A web interface that allows easy problem

disambiguation, formulation, communication,

validation, recognition and rewards.

3. Behind-the-scenes infrastructure for handling

competiton participantsô paperwork and inquiries,

generating and assuring assent with competition

rules, and for legal compliance.

4. Intellectual property rules and documents in place to

enable the conduct of competitions to develop assets

for enterprise or government clients.

5. Infrastructure to allow customers to create and

launch their own contests and follow a workflow to

administer the challenge to completion and transfer

of assets.

http://www.topcoder.com/

10
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

6. A centralized web location for participants to obtain

problems, submit solutions, judge submissions, view

results, scores, statistics, and so on.

7. A central web location for discussion and

interaction, providing the community with a ñtown

squareò with discussion boards and a wiki to share

information.

8. Profiles of and information about the different

competitors - all of a memberôs activities are tracked

in real-time and statistics on performance made

publicly available.

9. Collaborative software development infrastructure

such as source code control, wiki content

management, etc.

10. Quick fix mechanisms to make time critical and

small corrections to software developed during

regular contests. At TopCoder, Short stint

challenges called ñBug Huntò and ñBug Raceò

competitions are specifically designed to elicit a

working solution to a small problem. These

challenges are used to update content, to develop

quick fixes to technology assets and documentation

where the contest ends once a demonstrable solution

is submitted, often in a matter of hours.

TopCoderôs clients can identify the problem to solve and

even contribute to picking and choosing what parts of the

process to use. This approach is particularly well-suited

for the development of new systems, where the

integration points with existing systems are well-defined

and can be tested by the community or accurately

simulated. Bugs in existing systems can also be fixed

using the same types of development environment made

available to the community.

Development of upgrades to existing systems where

integration points with other systems are not available to

the community, and are not easily mocked or simulated,

can be more challenging because this typically requires

additional client personnel to help identify the pieces that

can be developed by the community and to integrate and

deploy them into the client environment.

Over the past three years, TopCoder has run over 4500

challenges with 91% completing successfully. Among

other factors, TopCoder attributes the high rate of success

to the methodology of breaking down a task and honing in

the key elements, the large size of the community

covering a variety of technology disciplines, and the

ability to use of historical data to design and price the

challenges in a way that they will be successful.

Additionally, TopCoder has over the past ten years

developed and refined these contests, attracting hundreds

of thousands of technologists and the infrastructure to

support them.

With the respect to 9% of challenges that are not

successful, TopCoderôs view is that a number of factors

contribute. Most typically, a competition does not

complete successfully because the specification is unclear

or is too complicated and is asking for more than is

typically requested for that competition type. The main

indicator of this is the activity ï or lack thereof ï in

competition registration and in the discussion forums.

Sometimes the market is changing, or TopCoder is testing

the market, or the prize amounts are set too low to

encourage sufficient participation on a particular problem.

Usually, in these cases TopCoder can achieve a successful

result by dividing the contest specification into multiple

parts, and reposting as separate competitions, or by just

raising the prizes. Of course, when TopCoder

experiments with pricing, changes competition types or

deliverables, or adds a new competition type, there is an

expectation that some competitions may not complete

successfully as the market adjusts to the change.

Figure 6 ï Example Software Application Development Methodology

11
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

Figure 7: List of contest details and schedule of the InSPIRE program to develop the Zero Robotics Web Interface

8. CROWDSOURCING CONTEST

RESULTS

The Zero Robotics infrastructure was built using the 2010

Zero Robotics web site as a prototype via TopCoder

crowdsourcing contests. The program has a TopCoder co-

pilot who interacts regularly with TopCoder and MIT and

provides technical support to the competition participants.

MITôs role was to answer technical questions relating to

the requirements in each of the contests and provide

detailed feedback to the co-pilot and members. As

mentioned in Section 7, there are

online tools available to track the ongoing contests.

Figure 7 shows a screenshot of the TopCoder Cockpit tool

displaying the list of contests, present and past, statistics,

and timeline. At a high level, the development tasks

undertaken using collaborative competition were:

1. Integration of the Graphical Editor being built

separately by Aurora Flight Sciences.

2. Development of the Zero Robotics community

website.

3. Development of the SPHERES integrated

programming environment using the 2010 version as

a prototype

4. Integration of the SPHERES high-fidelity simulation

into the TopCoder server compilation and testing

óFarmô, which is the robust back-end handling and

implementing the ZR simulation requests.

12
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

A Game Plan schedule was developed for each high-level

task, divided into the following phases:

Conceptualization, Wireframe (to design the look),

Storyboard (to design the feel), Architecture, Assembly,

Testing and Deployment. For each task and each phase, a

list of required contests were made and recorded within

the Game Plan. Part of the Game Plan for the front end

task is shown in Figure 8. The horizontal blocks represent

each phase and the rows represent an individual contest.

The columns are the timeline; the pink regions mark off

the period when a specific contest is scheduled to take

place.

Figure 8: Front End game plan

Each individual contest lasted between 5-21days and

awarded prizes between $100-$2500 depending on its

requirements and scope of the contest, and were defined

based on TopCoderôs historical experience in the market

for each type of deliverable. The crowdsourcing contests

included 3 types: graphic design Studio contests (which

have been described earlier; evaluated by MIT and

TopCoder), software contests (which have the milestone

and submission phases but are evaluated by reviewers

selected from within the TopCoder community by the

program manager) and bug race contests (where the first

member of the TopCoder community to submit a solution

wins).

Each Studio contest began with the release of a set of

requirements and the inputs needed by the participants.

Members of the community registered to participate in the

contest during the óRegistration phaseô. Once the contest

launched, participants could review the requirements and

work on the problem. For some competitions, such as the

conceptualization and wireframe competitions, half-way

through the contest participants were required to submit a

ñmilestoneò submission. Reviewers and/or the client

team reviewed the milestone submissions and provided

feedback to participants, awarding small prizes to up to

five participants. Participants integrated the milestone

feedback into their work, improved upon it and submitted

their full solution by the contest deadline. All the entries

were then evaluated and first and second place awarded

prizes. The winners are responsible for improving their

submission according to the reviewerôs final comments in

the post-contest óFinal Fixô phase.

An example of such a contest is the Front End Storyboard

Challenge. The purpose of this challenge was to generate

ideas for a look and feel for the web-based integrated

development environment to be used by students to

program satellites. The prizes for this competition were

$1500 for first place and $500 for second place. There

were 5 milestone prizes of $75/each. Participants were

provided with a description of the solution needed, along

with the conceptualization document and wireframes that

had been developed in previous competitions. In

response, the participants provided a series of graphic

images that showed creative examples of how the screens

might appear. The competition began June 9, 2011 at

9am Eastern. Milestone submissions were due June 12,

2011 at 9am Eastern, and the final submissions due June

15, 2011. The winners were announced on June 21, 2011.

The milestone submissions allowed the solvers to get

feedback about their submissions, opening lines of

communication. It also helped the competition sponsors

determine whether there was sufficient participation in the

competition. In this competition, there were 18

registrants, with 10 submissions at the milestone and 4

final submissions. The ñbestò storyboard as determined

by MIT and TopCoder (Figure 9) was selected from these

4 submissions and served as an input into the architecture

group of contests for the website.

Figure 9: Zero Robotics Website, look designed by the

storyboard contest

The contests to design the look and feel of the website

(Website wireframe and storyboard contests) as well as

contests to design the name and logo for the Zero

Robotics games highlights the ócreative inputô benefit of

the crowdsourcing model. Evaluation was done and prizes

were awarded based on MITôs judgment with input from

TopCoder. While the storyboard competition did very

well, the design of the logo did not yield an integrated

result satisfactory to MIT, in spite of 12 final

submissions. MIT was able to finalize a logo by putting

together contributions from 2 winning submissions. Had

MIT not been able to do that, TopCoder could have run

13
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

another logo contest using the winning submissions as

inputs, and so conducted an interative development cycle.

While the Studio and software development contests were

the main development tools used to further development,

Zero Robotics used Top Coder Bug Race contests for fix

quick, time-critical bugs. A short problem statement and

the appropriate section of design or code was released for

each competition and the first competitor to satisfactorily

submit a fix is awarded a prize. Bug Race competitions

can be used for quick changes, .short tasks that didnôt get

done during a contest, and integration of solutions from

parallel contests ï they are essentially Studio contests

where the first member to submit an acceptable solution

wins. The Bug-Race tracking system allows clients and

reviewers to easily create request into order to obtain the

specific fixes required. These competitions typically

range from about one day to a week long and by design

have significantly less participation than the development

contests. The óBug Raceô competitions have takers

because the task is very specific and needs quickly

available, specific skills. The participant works closely

with the person who submitted the ticket and resolves the

problem. This capability highlights the ócrowd

productionô benefit of the crowdsourcing model.

It is worth mentioning that the crowdsourcing model used

by TopCoder for Zero Robotics is different from other

online staffing outsourcing resource sites that are

availabile such as oDesk or eLance in that those sites

allow their customers to hire a specific person for a job,

follow up with him and pay him after completion. the

focus is on selecting an individual, and the competition is

in the candidate selection process rather than the solution

selection process. Also, in those models every contractor

typically gets paid rather than only the winners. The Bug

Race competitions differ from this model in that they are

a request for a deliverables, rather than a specific person,

even though the result is that a small number of

individuals completed most of the tasks.

8.1. Contest Participation

The participation in the contests for the development of

Zero Robotics was generally what would be expected.

There were 54 Studio and software contests in 12 broad

categories held among members of the TopCoder

community between April 2011 to December 2011. These

contests cumulatively received 857 registrations (notice of

intent to participate), 149 full submissions and 57 prizes

for these contests were awarded. There have been a total

of 239 unique participants in the 54 contests.

Figure 10 shows data from the 54 contests. The contests

have been sorted in the order of occurrence in the

development cycle shown in Figure 6. Registration

represents the amount of initial interest in the contest and

submissions represent the final output from the contest, of

which one is chosen to move forward per contest.

Specification contests that include making wireframes,

storyboards, web design and application front end design

as well as the assembly contests attracted the highest

number of registrants possibly due to the large number of

people who possess the required design and software

skills. Component production contests include

prototyping tasks. On the submissions side,

conceptualization is lowest, possibly due to the specificity

of the task (abstraction of the given project required rather

than execution of a defined task using pre-existing skills

such as design). It will be shown later using Figure 12 that

the submissions number and prize value turns out to be

correlated because the prize values are determined by the

market, to induce the desired levels of participation.

Figure 10: The average number of users that

registered (top) and submitted valid solutions (bottom)

per contest, arranged by broad contest category

Architecture contests, which involve discussing the

software requirements with the client and reviewers,

documenting them in detail and making test suites and

test scenarios, had the most discussion threads on the

forums. Architecture contests are also the critical point for

technical design, and there were occasions where MIT

rejected the winning entries because they did not meet the

specifications. The back-end conceptualization and

architecture contest was conducted 3 times, and ultimately

the community member who won the architecture contest

not only designed, but also assembled and supported the

back end all through.

14
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

We also noticed that module assembly had a skewed

number of registrations vs. submissions. A

disproportionately large number of people registered for

these contests. It appears that they gauged their

probability of winning by the discussion forum content;

and a small subset of the participants ultimately followed

through to submit a solution. For example, the User

Profile Portlet Assembly contest had 45 unique registrants

but was dominated by the community member who won

the most assembly contests in the InSPIRE project. This

phenomenon was seen in multiple assembly contests ï

many registrants but eventually 3-4 submissions.

As mentioned above, fixing bugs that are identified in the

production software, small changes and integration tasks

are performed using Bug Race competitions. by MIT or

the ZR website/IDE users are documented in the

TopCoder system in the form of a issue report. Unlike, the

Studio contests, there is no competition for the best

solution of a Bug Race. Instead, community members

contact the ZR TC program manager or co-pilot with the

request to take up the Bug Race competition and the first

acceptable solution is selected to fix the bug. The fixed

piece of software is then merged into the existing

framework. There were 163 Bug Race competitions

between September 2011 and December 2011 with 32

winners.

8.2. Contest Prizes

MIT and TopCoder spent $187,260 on prizes for the 54

Studio and software contests and the 163 Bug Race

competitions, including reviewer payments and co-pilot

support. This is only the payments to the community, and

does not include costs for the 2 MIT graduate students,

the TopCoder platform, or the TopCoder platform

manager. Given that 239 unique members of the

community participated in the contests and bug races,

from one viewpoint, we were able to óbuyô diversity in

participation at the rate of $800 per user over a period of

about half a year. However, among the participants

(counted as those who registered for a crowdsourcing

contest or a reviewer), there were 90 individuals who won

prize money. TopCoder therefore paid an average of

$2000 per winning competition member over the 6 month

period, although the payments were skewed toward larger

amounts to a smaller group. Therefore, the number of

people working on our problems was far greater than the

number of people we paid. This does raise the concern of

retention since making any money is based on a

probability of success. However, since all participants

have access to the discussion forums and membersô

histories, they are expected to make educated predictions

on their win and participate accordingly. As shown in

previous literature, access to complete information

actually encourages the participation of the strongest

contenders.

Figure 11 captures the 54 Studio contests run over a

period of 7 months in terms of the number of unique

members who registered to participate i.e. expressed

interest to compete and the number of complete solutions

submitted at the end of the contest. The contests have

been arranged in decreasing order of efficiency, defined

as the ratio of submissions to registrants. The overall

efficiency over all the contests was ~ 15% and the figure

visually indicates a large number of contests that have an

abnormally low efficiency, which can be due to a variety

of reasons. The user profile portlet assembly contest and

back-end architecture contests have low numbers because

the pool of potential participants contained a member

(different for each of the 2 contests) who was known to

have a nearly 100% winning streak in Zero Robotics

contests. As a result, the other participants backed out

after gauging a lowered chance of winning. On the other

hand, the highly efficient contests like the game name and

logo design contest was a very creative one that did not

require very specific skills and all the participants

competing in the category had no prior history with ZR.

Low efficiency can be a source of concern since it

potentially indicates failure to retain the captured interest

in a contest and additional effort is required to increase

active participation such as increasing the prize money,

advertising on the TC website or actively reaching out to

skilled members. This is especially required for contests

where there are no strong competitors in the participant

pool.

Figure 11: Number of users per contest for the Zero

Robotics Development Program

Figure 12 shows the prize money distributed for the

development of products in each of the categories listed.

The vertical blue line marks the average money paid per

payment, which is $356 (525 payments were made,

including co-pilot and reviewer payments. Contest

categories as conceptualization or conceptualization are

rewarded much higher than the average prize money in

order to attract members to participate in them, in a

market based determination of awards. Contests that

15
978-1-4577-0557-1/12/$26.00 ©2012 IEEE

appeal to a broader skillset (as seen earlier by the number

of registrants in Figure 11) such as prototyping i.e.

component production and deployment did not require as

high a prize for gaining potential interest. The number of

contests for conceptualization and architecture is also far

lesser than, say, assembly. Correlation with Figure 10

shows that contests that had the lower number of

submissions (e.g. Conceptualization) required the highest

value of prizes and those that had higher number of

submissions (e.g. specification and component

producation) had lower amount of prizes.

Figure 12: Dollars spent as prize money for each

contest category The blue vertical line is the mean of

all the contest prizes run through December 2012.

From the participantsô point of view, a participant

dominating the contests can find a good source of income,

no matter which category he chooses to dominate in. This

leads to loyalty that is very useful because not only does it

retain the good quality participants but also provides a

field for Bug Race competitors. Figure 13 shows the

cumulative earnings of the top 11 earners in the ZR

crowdsourcing contests. These 11 highest earners among

the 90 total winners claimed 62% of the total money spent

on all the payments. The individual who dominated the

assembly contests (maximum in number and average in

prizes) claimed nearly 26% of the total prize and reviewer

money in assembly contests. Since the number of

assembly contests is high, there was opportunity for other

participants to compete for the dominating position and

make significant prize money. Moreover, 4 of the top 11

winners are those who dominated the assembly contests

where in the lower 3 have claimed upto 5% of the

assembly prize money. The member who won the initial

architecture contest for designing the back-end of the IDE

was also went on to architect the entire back-end and,

since the back-end is the heart of the ZR simulator, he

monopolized all subsequent back-end contests as well. As

a result, 100% of the back-end prizes were awarded to

that individual. The individual who dominated the

architecture contests claimed nearly 45% of the

architecture prizes. This appears to be a direct result of

the fact that architects need to clearly understand the

client requirements and document them precisely in order

to do well in the contests. The table in Figure 13 shows

three of the highest earning categories (as established in

Figure 12) and the percentage of the total earnings in that

category that was claimed by the participant who claimed

the highest in that category. Very obviously, it pays very

well to be a ñloyalò participant.

Category % of total

payment

category

Conceptualization 68%

Architecture 45%

Assembly 26%

Figure 13: Prize money in $ of the top 12 community

members in terms of total earnings and the % of

monopoly in each category

The ñloyalò participants have been consistently

conversing with MIT on the TopCoder forums over many

contests and are well versed with the ZR framework,

increasing their chances of winning contests due to their

subject matter expertise. From the perspective of the

customer, the phenomenon of ñloyalò participants reduces

the effort of educating new participants on the

background of the ZR framework. For this reason,

TopCoder provides incentives in order to encourage

member loyalty. Apart from domination opportunities in

contests as seen in the statistics above, loyal members (as

evaluated by their óreliability ratingô and contest

participation) are given an extra payments in addition to

the per-contest prize money. While this seems to favor

partial monopolization of a market that is inherently

supposed to be competitive in order to produce quality,

the caveat is that the groups of people who dominate the

contests are self-chosen from all around the globe, who

have competitively established their position through the

process of crowdsourcing. It would been much harder, if

at all possible, to find such a match by looking locally for

such a candidate, hiring him full-time and managerially

requiring that he keep up his standards of work ï all

