SPHERES Zero Robotics Software Developmentessons
on Crowdsourcing and Collaborative Competition

Sreeja Nag Ira Heffan
Massachusetts Institute of TopCoder Inc.,
Technology, Glastonbury, CT 06033

Cambridge, MA 02139
Email: sreeja_ n@mit.edu

Email:
IHeffan@topcoder.com

Abstract

Crowdsourcingis the art of constructivéy organizing
crowds of people to work toward a common objective
Collaborative competition is a specific kind of
crowdsourcinghat can baused for problems that require
acollaborativeor cooperative effort to be successful, but
also usecompetitionas amotivator for participation or
performance.The DARPA InSPIRE program isising
crowdsourcingto develop spaceflight softwafer small
satellites under a sufrogram calledSPHERES Zero
Robotics - a spacerobotics programming competition
The robots are miature satellitescalled SPHEREShat
operateinside the International Space Station (ISThe
idea is to allow thousands of amateur participants to
program using the SPHERES simulator and eventually
test their algorithms in microgravity.he entire sfiware
framework for the programto provide the ability for
thousands to collaboratively use the SPHERES simulator
and create algorithmds also built by crowdsourcing.
This paper describes the process of building the software
framework for crowdsourcinGPHERES development in
collaboration with a commercial crowdsourcing company
called TopCoder It discusses the applicability of
crowdsourcing andcollaborative competitionin the
design of the Zero Robotics software infrastructure,
metrics of success amthievement of objectives.

TABLE OF CONTENTS

1. INTRODUCTION.....ccccoirmiiiiiiiiiiieercreeeeeee 1
2. SPHERES...........c e 2.
3. ZERO ROBOTICS HIST®Y ....cccceivviiiireeenne 3.
4. ZERO ROBOTICS WEB ENVIRONMENT........ 4
5. INNOVATION USING COMPETITIONS........... 5
6. ZERO ROBOTICS WEB INTERFACE
DEVELOPMENT METHODOLOGY.........ccccvvvrvvveeennid.
7. ZERO ROBOTICS CROWDSOURCING
CONTESTS INFRASTRUCTURE.........cccocveeiiieee 9

9781-457705571/12/$26.00 ©2012 IEEE 1

Massachusetts Institute of

Alvar SaenzOtero Mike Lydon
TopCoder Inc.,
Glastonbury, CT 06033
Email:

MLydon@topcoder.com

Technology,
Cambridge, MA 02139
Email: alvarso@mit.edu

8. ZERO ROBOTICS CROWDSOURCING

CONTEST RESULTS.......oitiiiiiiiiicciiece, 11
9. CONCLUSION.....covviiiiiiiiiiiii, 16
10. REFERENCES............oo it 17
13. BIOGRAPHY ....ooiiiiiiiiiiiiiiiiieee e 18

1. INTRODUCTION

The term 6écrowdsourcingd was
in 2006 in a Wired magazine articléle later went on to
define the term asd Si mpl vy defined, c

represents the act of a company or institution taking a
functiononce performed by employees and outsourcing it
to an undefined (and generally large) network ofgbedn

the form of an open cfll]. Most generally, a person or
organizationwith a problem invites &rowd to come up
with solutions and offers incentivesof contribution.
Crowdsourcing has been classified into various typologies
based on thaims of practic§2]: Problem solving (crowd
wisdom), creative input (crowd creation), opinion polling
(crowdvoting), outsourcing tasksrowd productior) and
raisingmoney (crowdfunding). Theffort described here
focusal on creative input, problem solving and
outsourcing for spaceflight software development in the
context of the SPHERES Zero Robotics Programjoint
effort between MIT, TopCoder,and Aurora Flight
Sdences, supported by NASA and DARPA.

SPHERES Zero Robotics is a DARRitiated endeavor
under the umbrella program called InSPIREdevelop
spaceflight software by crowdsourcing. It isr@botics
programming competition where studemsrn towrite
programs that control a satellite in spagsing a web
browser. The robots are miniature satellites called
SPHERESSynchronized Position Hold Engage Reorient
Experimental Satellites)i an experimental testbed
developed by the MIT Space Systems Laboratory (SSL)
operatingon the International Space Station (ISS) to test
control and navigation algorithms in microgravity. The
participants compete to win a technically challenging
game by programming their strategjimto the SPHERES

r


mailto:sreeja_n@mit.edu
mailto:IHeffan@topcoder.com
mailto:alvarso@mit.edu
mailto:MLydon@topcoder.com

satellites. The gameancludes command and control
problens of interest to MIT, DARPA and NASA.
Students useeither a graphical editor or a C editdo
write code,and thensimulate their program and see the
results in a flash animatiofhe simulation uses a high
fidelity 3D model of the SPHERES satellites. The
astronauts run the final robotics competition on the ISS
and interact with participating students via a live video
broadcast in a large event at MIT, webcast live to all
participarts so that remote viewing is possibl€he
structure of theournament includelkoth competition and
collaboration in order to meet tleelucational goals of the
program It is this mix that enablesparticipants --
amateur developers assisted by mentersto create
competitivesolutiors to the specific tasks outlined in the
game The software frameworko enable the above
process, i.e. allow crowds of students to use the
SPHERES simulator, write spacefligtpable programs
and interact/collaborate with &a otheris built using
TopCodercrowdsourcingconteststhat also use amix of
competition and collaboratioffopCoder is aommercial
company that uses a mix of competition and collaboration
within their online community of, over 300000
developers, who oluntarily register on their website, to
make scalable, clodbased software systenfdescribed

in detail in Sections 7 and.8)

Participants
(Students,
mentors, etc.)

¥

Problem
Statement
as a Game

1. SPHERES
Algorithms

2. STEM
Education

ZR Web ZR

‘ Interface ’ Tournaments
Feedback

Figure 1: Zero Robotics Architecture.

Spacefight software development via Zero Robotics
therefore, occurs for existing spaceflight hardware and in
two stages, as shown Figure 1: (1) Building the web
based developmenenvironment for the programming
conpetitionsi circled in red- (by leveraging a crowd of
thousands of software developers) and (2) the
programming competitions themselvieswithin the blue
box - (when thousands of amateur participants contribute
to writing SPHERES softwaje Both stages er
demonstrations of crowdsourcing using different classes
of participans and with different objective§his paper
describestage 1 of the process.

The primary goal of the Zero Robotics tournaments is
Science, Technology, Engineeringnd Math (STEM)
edwcationand the secondary goal is to develop spaceflight
algorithms(specifically for SPHERES)t the same time.

In Figure 1, the students who participate in the
tournaments are the input

9781-457705571/12/$26.00 ©2012 IEEE

and the output are the mentioned objectives, STEM
education and satel
game which is available through the ZR Web Interface,
which in turn serves as tools for students to achieve the
Zero Robotics objectives. Thousands of developers
competel in TopCoder contests to creatively design a web
interface for these studts (crowd creation) and assemble
the software components to build a robust framework to
allow satellite control (crowd production)lhis paper
discusses theprocess of developing the platforto
organize the tournaments and release the gamefesred

to as the framework development effort, with the intent of
making MI T 6 s
accessibleand providing a community platform for
crowds to interact and write spacefliglapable software

for SPHERESIt usesdata from thedevelopmeneffort to
discuss the role of competitions ienabling space
research amateyrsfrom nontechnical personnel to
software developersto create space mission software
and the subsequent value gained by the space community

2. SPHERES

The SPHERES program bega 1999 apart of anMIT
Aero/Astro undergraduate clasBrototypes were built by
the student clasm 2000, flight satellites were delivered
in 2003, andaunchedto the 1SSin 2006[3]. SPHERES
became one of thdirst educational programs that
launched studerdesigned hardware to the ISS.
SPHERES consists of a set of tools and hardware
developedfor use aboard the ISS and in grotbabed
tests: threenancsatellites, a custom metrology system
(based on ultrasound timeof-flight measurements),
communications hardware, consumablegtanks and
batteries), and aastronaut interface. They operate aboard
the ISS under theupervision of a crew membé@Figure

2).

1SS017E015122

Figure 2: SPHERES operates 3 satellites aboard the
ISS (astronaut and MIT alum Gregory Chamitoff)

The grounebased setugonsists of a set of hardware
analogous to what is itthe Station:three nanesatellites, a
metrology systs with the sameeometry as that on the

i 185,0a trdsearclz enented RGW, o anikplenishabiey st e

includess as of t w

SPHE RE Savaikblemandat or



consumablesThe SPHERES satellites implement all the
features of astandard thrustdvased satellite bus. The
satellites havefully functional propulsion, guidance,
communications, angoower subsystems. These enable
the satellites to maneuvénr six degrees of freedon®
DOF), communicate with each other and with the laptop
control station, and identify their position with respect to
each other and to the referencenfie. The laptop control
station (an 1SS supplied standard laptop) is used to collect
and store data and to upload new algorithms. SPHERES
uploads new algorithms (ahead of time) and downloads
data (after the session) using the ISS communications
system.

Figure 2 shows a picture of a SPHERES satellite and
identifies its mainrcomponentsPhysical properties of the

satellites are listed in
Tablel.

Diameter 0.22m
Mass(w/tank & batteries) 4.3 kg

Max linear acceleration 0.17 m/$

Max angular acceleration 3.5 rad/$

Power consumption 13W
Batterylifetime (replaceable) 2 hours

Table 1. SPHERES Physical Properties

Pressur Control Panel

Regulato ~—

Ultrasound

Sensors

Pressur
Gauge

Battery

Thruster /

Figure 3: A SPHERES Satellite

SPHERES was designed to bdaaility aboard the ISS,
not just a single experiment, by follovg a set of design
principles learned from previous MIT SSL experiefitle

To providethe ability to involvemultiple scientists in a
simple mannera SPHERES Guest Scientist Program was
created[4]. This program consists of a test development
framework, a robust and flexible interface to the
SPHERES flight software, a portable hifithelity
simulation, two laboratory test beds and data analysis
utilities, and supports the efforts of geographically
distributed researchers in the development of algorithms
The Zero-Robotics program expands theu€st Scientist

3
9781-457705571/12/$26.00 ©2012 IEEE

Program with a simplified interface so that skents at
many different grade and skill levetsan program the
satellites

3. ZERO ROBOTICS TOURNAMENTS

The Zero Robotics(ZR) competitions drawsignificant
inspiration fromFIRST Robotics [5]and shares common
goals including building lifelong skillsand interestin
science, technology, engineering, and mathough
projectbased learning FIRST Robotics concentrates
heavily on the development ofhardware, has a
registration fee and does not have any spatzed
components. Since  SPHERES concentratesn the
development of softwareZero-Robotics complements
FIRST Robotics by providing students an avenue to
further developtheir software skills, with the incentive
thatthe software they develogill be tested by robots and
astronauts in spa@g no cost to participants

In fall 2009, the SSL conductedpdot program of the
Zero Robotics competitiowith two schoolsl0 students
from northern Idahd6]. In 2010, Zero Robotics was
acomponent of NASA's Summer of Innovatjora
nationwide program targeted at encouraging STEM
education for middle school students. During this
competition, 10 teams and over 150 students from schools
in the Boston area whked for five weeks to program the
SPHERES to compete in an obstacle course facthe

fall of 2010, Zero Robotics conducted a nationwide pilot
tournament for high school students named Zie
Robotics SPHRES Challenge 20100ver 200 students
from 19 US states participated as part of 24 teams. The
objective of the game was to complete the assembly of a
solar power station by maneuireg a satellite to dock
with a floating solar paneind then bring it back to the
station to finish the mission before thpponent does.

In the fall of 2011, the ZR tournament grew agaid had
145teamsparticipatingfrom all over theUSA and select
countries in EuropeThe objective of th2011game was

to navigate the satellito collect a variety of tools, mine
asterdads by spinning on it or revolving around it and
depositing the collected ore in mining statiornBwenty
seven of the teams that participatedl be able to see
their code run on the ISSVhile previous competitions
used a prototype web interface, 2Qkkd aweb interface
and the integrated development environmensupport
this growth in participation, and for the first time the
infrastructurefor the competitions wagself developed
using crowdsourcing.We expect that this infrastructure
will enableto the program to scale to many more teams in
the future While this paper deals with the development of
the infrastructure only, there is separate literature
available that reviews the Zero Robotics tournaments and
their impact on crowdsourcing and STEMducation [7].



4. ZERO ROBOTICS WEB
ENVIRONMENT

Each Zero Roboticstournament hasncluded several
competitionrounds in which students play the same or
different gamesgainst each otheBtudent teams submit
an application on http://zerorobotics.mit.edu/ Upon
acceptance, they caneate, edit, share, savéenslate and
submit codausingthe ZR websiteThe component®f the
web environment available to the studendll be
explainedbriefly in this sectionmore detail can be found
in previously published Zero Robotics literat(irg¢. Apart
from the game, animation and the graphical editor, all the
components described below webuilt using TopCoder
crowdsoucing contests.

4.1. The Zero Robdics Game

For each tournamenthe Zero Roboticsdevelopment
team desigrs a different game. The gambas the
following goals developed from the lessons learned
during previous instantiatic of Zero Robotics
tournaments and constraints of the SPHERESiviare
and software.

T A game with relevance to stadétheart
research with SPHERES, so that the work of
students can contribute to future research at MIT,
NASA, DARPA, and other research centers.

i Each team controls one SPHERES satellite
during thegame which involves twteams

Each Zero Robotics game @esigned, balanced, tested,
programmed into the SPHERES Zero Robotics API by
MIT and made available on the Integrated Development
Environment on the ZR websitdhe game dégn and
testingwasnot developed througbrowdsoucing.

4.2. Software Architecture

In the past programming the SPHERES satellites
required users to haveaccess to the compilers for the
SPHERES processoand familiarity with the Guest
Scientist ProgramThis was not practicab engage large
numbers ofstudents ofhigh schoolage andbelow
Instead MIT and TopCoder havdevelopeda webbased
interface to program the satellitednich makes use of the
sameSPHERES highfidelity simulationthat is used to
develop flight software

The programming takes place via a wesdsed GUI,
which provides a simplified interface to the Guest
Scientist API functions and enforces constraints that
guarantee compatibility with theSPHEREScompilers

Students have access to a text based editor as well as a

graphical editor, for those with little or no prior
programming experienceA distributed computation
engine hosted on Amazon EC2 virtual machines
compiles the user code, links it with tbere SPHERES

4
9781-4577.0557-1/12/$26.00 ©2012 IEEE

software, andgerforms a full simulation of the program.
An Adobe Flaskbasedvisualizationcreates a animated
representatioof the results. The code programmed by the
students via the welnterface can beexecutedin the
SPHEREShardware The flow of information in the ZR
software infrastructure is shown Figure 4. The user
code is transmitted to the web app which launches a
simul ati on i ns twhiohcoa compietion h e
returns the results to the web app and finally the browser,
then rendered in the form of an animation.

Farm

FRONTEND BACKEND

Load Balancer

Web Application

Web Browser

Code fragments STV
PR  ntcrface

Build errors

IDE User data

Servers on the
cloud

Animation XML data Database

Interface

Farm
Controller

MySQL DB %

Farm Processes
(Simulation
Instances)

Figure 4: ZR Software Architecture

0,0.6,0.4)

Figure 5: Example of a ZR Animation

0 |

Users write code insidemain function called ZRUs er () 6

available in each projecZRUser()is called at every
iteration ofthe satellite control cycléapproximatelyonce

per second)User defined procedures are all called inside
this main which has as its inputs, the position, velocity,
attitude and attitude rates of each of the satellites and the
time since the game begurhe code within and called by
ZRUser() is inserted into a prdefined template and
called by the ZR simulatioengineto model control of

the SPHERES satellites.

4.3. Graphical Editor

The ZR graphical editor allows users with little or no C
experience to write code using ragranddrop
programming It is currently possile to see and generate
C-code from the diagram view so that users can initiate
their code with diagrams but can move on to more
complicated code using the C editdhe graphical editor


http://zerorobotics.mit.edu/

was built by Aurora Flight Sciences and integrated into  accurately determining h i Ipngitide at sea, created a

the overall stiware framework of Zero Robios using Board of Longitude to oversee the offer of a prize of
TopCoder crowdsourcingontests. 20,000 pounds to anyone who could solve the problem.
Parliament could have directly funded astronomical
44. Team and Project Management research efforishowever,instead theychose to offer a
Tools prize to anyone who could solve the problemJohn
Harrison, a seHaught clock maker developed an
In the ZR tournamenteams are organized into two types ~ IMProvedclock design that would be accurate at S&j.

of membes: team leads and team members, different
permissiondor each roleThe ZR website provides users
with the tools that they need to create, edit, share with
others, compile, simulate and save all their projects and
results. The ZR simulation allows users to tweak different
game parameters and choose simulation settings so that
they can test different parts of their code independently.
They can simulate an individual project, race against
another member of their team or race against standard
players provided by MIT.The simulationalso allows
students to control the speed of the gaimeshow the
motion in real time or up to 10 times fastér a formal
competition, these settings are fixed by MIT and the
purpose of the simulation is to providample

opportunities to test differg strategies and finalize a A more recent example of the use of lasgale
robust submission. innovation tournamnts in aerospace include thePXize

competition. On October 4, 2004, the X PRIZE
Foundation awardeda $10 million prize to Scaled
Composiesfor their craft SpaceShipOré1]. Aerospace
designer Burt Rutan and financier Paul Allen led the first
private team to build and launch a spacecraft capable of
carrying thiee people to 100 kilometers above the earth’s
surface, twice within two weekshe first humans to
achieve this feat

In 1775, a prize of 100,000 francs was offered by the
French Academypf Sciencedor the production oflkali
sodaash (sodium carbonaté&om salt (sodium chloride)
[9]. A surgeon, Nicholas Leblanc, developed a process
that some havesince characterized dle beginningsof

the modern chemical industryin 1919,a $25,000prize
was offered by hotel magnate Raymond Orteig to the first
person to fly norstop between New York and Parign
1927, Charles indbergh won thatprize landing 2¥2
hours ahead of schedulE0].

5.2. Recent Usage

During the tournaments, teams are given the opportunity
to challenge other teams for informal scrimmages. The
website provides the ability to select a user project and
invite other teams to race their projects against the
selectedoné cal | ed a & c hcanlaccephare 6 .
reject challenges using the provided Ul and view the
results, animations and leader boards for each challenge
that they participateth. A simple interface is available

to teams for submitting a project as an entry into a formal
competition. MIT runs automatedsimulatedcompetitiors
using these submitted projects elimination rounds
Teams thateach the final rountiave their programs run

on the SPHERES satellites aboard the ISS with the help
of astronauts.

U.S.Government agenciesn usehallengedo reach out

to thousands of citizensvhich is why thewhite House

has been encouraging agencies to consider the use of
challenges as @olicy tool. At the outset of his
Administration, President Barack Obama signed the
Memorandum on Transparency and Open Government,
committing the Administration to creating a more
The Zero Robotics websitehe IDE and theall the transparent, participator_y, and colIaboraEive government.
management tools werend are being developed using !N Sept. 2009the President released hisSt r at egy
crowdsourcing contests supervised by MIT and AMer i can Icalng foradgéndes do increase

TopCoder More detail abouthe contests and quantitative their ability to promote and hamness innovation by using
resultsis providedater in the paper. policy tools such as prizes and challenfied. On Dec.
8, 2009, the Director of the Office of Managemh and

Budget (OMB) issued the Open Government Directive,
which required executive departments and agencies to
take specific actions to further the principles established

5. INNOVATION USING

COMPETITIONS bythePr esi dent 6 s me mwdevelop anm, i
) ) Open Government Plan that shb d fAi ncl ude i
5.1. Historical Usage methods, such as prizes and competitions, to obtain ideas

from and to increase collaboration with those in the
Challenging crowds to compete to achieve a difficult goal
by providing the incentives of prizes has a long history
and has led to many successful competition solutions LIt is interesting to note, however, that both Harrison and
(hence, the terms oOchal |l en ¢eblanghaddreylle copeeting @rptheii nsatlarison dug to wi | |
often be used interchargjgly). In 1714, theEnglish the resistance of theestonomical establishment that waslding

parliament, seeking to solve the difficult problem of out for an astronomical solution and Leblanc due to the French
! Revolution
5

9781-457705571/12/$26.00 ©2012 IEEE



private sector, noprdfit, and academic communities
[13]. In January 2011, thamerica COMPETES Adil4]
wasreenactedwhich authorized all government agencies
to condut challenges and competitions.

Challenges must bdesignedo meet their intended goals
There is no single type of challenge that daliill all
needs A program that is solely intended to educate the
public about a topic will belesigneddifferently than a
challenge that is created to obtain an innovative solution.
To explore these differences, NASA created the NASA
Tournament Lab(NTL) in collaboration withHarvard
Business School and@iopCoderto useopen innovation
challenges to solve problemsthin the NASA scientific

and research communjtgndto reach beyond the walls of
the research centers and engage the world to help solve its
challenging and complegroblems[15]. Some examples

of successfly crowdsourced (crowd wisdom) NTL
problems are:

1 NASA required the development of a robust
software algorithm that would efficiently recognize
vehicles in aerial imagd46]. A set of 1000 images
containing vehicles and 3000 images containing
only background were provided as test cases. The
algorithm submissions were tested against a larger
set of data. After the problem had been selected and
framed, a threeveek competitionrwas held on the
TopCoder platform. During the competition, 139
programmers from around the world participated by
submitting 549 total submissions. The preliminary
data analysis bthe NASA teamshowedthat thetop
five solutionswere a significant improvement over
their current al gorithms,
computer Vision met hods.
working on integrating the winning submissions into
their own solution.

T NASAGs Space Life
the development of a software algorittinat would
sol ve a
ideal components of the space medical kit included
in eachmannedspace missiofl7]. As mass and
volume are restricted in ape flight, the medical kit
has to be designed in a way such that both expected
and unexpected medical contingencies can be met
through the resources in the kit well ase attuned
to the characteristics of the space flight and crew.
The challenge was to develop a software algorithm
that, based on mission characteristics, would
minimize mass and volumend provide the
resources necessary to minimize poor health
outcomes or mission abruption. After the problem
had been selected and framed, a 10 day competition
was held on the TopCodetatform. During those
10 days, 439 programmers from around the world
participated by submitting 5994 program
submissions. Thergliminary data analysis by the
NASA team is that the solutions developed by the

6
9781-457705571/12/$26.00 ©2012 IEEE

Scdences

leading entries far surpass the current sthtbe art
internal to NASA in terms of computation time (30
seconds as compared to 3 hours), diversity of
technical approaches and robustness. After the
competition was done, NASA researchers reviewed
the top 5 highest scoring code submissidns
looking at the actual code and documentatand
said thatfiThe amount of useful code developed in
such a short amount of time really made us
reconsider some of the ways that we write softévare
[18]. The NASA team wasnot able to directly
import the code into #ir software because their
modelwas created with th8AS software analytics
package but they converted elements frothe
winning submissions to develop a new algorithon
design the medical kids used in space missions.

NASA wanted to generate ideasfor new
applications to allow exploration and analysis of the
NASA Planetary Data System (PDS) databases
http://pds.nasa.gov/ While rich in depth and
breadth of data, the PDS databases have developed
in a disparatedshion over the years with different
architectures and formats; thereby making the
integrated use of the data sets difficult
Consequentlya challengefaced by NASA and the
research communitis to maximizethe usefulness
of the enormous amounts of P@&taand identify
ways to combine the data that is availabl¢éo
generate interesting applications (e.0.,
visualizations, analysis  tools, educational
applications, maships). The goal of this challenge
was to generate ideas for these applications.

ided AaSdfescriptidon of thé ftafgbt t dudientke
benefits of the application for the target audience,
the nature of the application (how should the
application be implemented? Overall, submissions
weté Bxpeetbd to @tardund” B Jéges’ ¢F text
including figures and tables and images. No code or

i b ac bfpecanknengingdhe | e m, Osoftware was necessary. Prizes included a $1000

grand prize and 3 $500 runnearg prizes. A $750
Acommuni ty choicebo
also was awarded. There were 1048 submissions
received, with the winner proposing an application
concept that was focused ona PDS documents
parser, processor and validation tool that could be
used to identifywhat areas, parameters, and objects
of the planetary systems are well resbad and
what obj ect s ,oameaningfihaththet e
data is sparsand more research is needfd].
Future competitionswill include implementing the
winning idea.

To summarizecompetitionshave had a long history to
spur innovation and solve fems creatively qrowd
wisdom) and in large numbersréwd production The
government and NASA have only recently tapped into the
power of challenges to organize their enormous amounts

e iPrhis¥s ifclided! & dedctiplion ®ff thetolefall @ 1 t

sel ecte

SPp


http://pds.nasa.gov/

of information available, identify and solve complex
problems and tdemocratize thennovationprocess.

5.3. Collaborative Competition
Competitionscan organiz individuals to work toward a
common objectivewith the incentive of a monetary or
nonmonetary reward Individuals with a diversity of
skills canparticipate in theask, with a setallocation of
individuals to tasks in which they believe that can be
successful. Collaboration allow individuals tavork
together to achieve larger goalBevelopment through
competitionsrequires a careful balance of competition
and colldoration to achieve its goals.

While big competitons6 chal | enged t he
difficult objective a series of smaller challenges can be
used to engage multiple participants if the challenge
structure includes collaboration.olaboration among the
participantsallows for the accomplishment of larger tasks
by multiple people, and fothe performance of each
participant to bémproved by learning fronsthers.There

are a number of ways to bring collaboration into a
competitive nodel but it is important toretain the
benefits of competition

6. ZERO ROBOTICS WEB INTERFACE
DEVELOPMENT METHODOLOGY

The Zero Robotics software is being developed using
TopCoder 6s met hodol og ywith f
the intent of improving the acsesi bi | ity
SPHERES simulator and providing a community platform
for crowds to interact and write spacefligigpable
software for SPHERES opCoder conducts competitions
among members of itsworld-wide technologist
community to create software ameichnology solutions.
Probl ems ar e posed in an
submissions of a specific type, size, and approximate
complexity, and submissions are judged to determine the
winner, typically with monetary prizes awarded to the
best solutions.For each of these tests a specification

for the desired deliverables is published along with the
price t o be pai d fthatr meetsh e
minimum criterig and in response developers submit the
actual deliverables.Contestantsan compete todevelop

the best algorithm to solve a particular probleta
develop a user interface desighe code for a software
component or to conceive of the best approach to a
business or operational problem or opportunity using
technology. Solution submissios can range from
documents containing ideas, workflow, schematics to
graphic design assets such as user interface designs,
wireframes and story boards to files containing software
code, test data and technical documentatfeor. many
solutions, standard corafition types and deliverables
formats reduce the learning curve for participants.

9781-457705571/12/$26.00 ©2012 IEEE

6.1. Evaluation Criteria

Competition jidging methods dependn the type of

competition.For most types of deliverables that can be

reviewed objectively, submissions are pemriewed by
historically  topperforming reviewers from the
community with a rigorous scorecard, and the winner
selected based on those scoreHowever, not all
deliverables can be judged objectivelgome other
examples are:

1  Sponsor of the challengelectsthe submission they
believe to be most valuable and most closely meets
the criteria set forth in the challenge.

1 Client and reviewers select the winner based on their
preferred submission (subjective); e.gusimess

P UrBqliderfientetitdsty @

1 Automatedtesting and scoring is used to evaluate;
e.g. algorithm development contestan bejudged
based on the performance and/or accuracy of the
algorithm usinga specified test data and scoring
methodfocused on the desired results.

In each of these scenaridse evaluation method needs to

be clear and objective, and the results transparent for all

participants.

6.2. Incentive Structure

The TopCoder web site is designed to identify, promote,

and reward the best participants in each category of

competition. Caslprizes are awarded to winners and
runnersup, and competitor results are posted on the site

c foropuldic tecognidian nof outstandingerformance. A
o fme vl erro G s

username i s
reflects their rating, so that their rating becoragzart of
their online identity [21]. Detailed, publiclyavailable
statistics above are kept on the web site so that all
participants can see how they compare to otkach as
biography, TC contest statistics, reliability rating,
peréopmance amdastoresoiin &ll ccategoges bfuconiesisn
participated in. This allows each member to judge the
level of competition in a potential contest and determine
the amount of effort he will put in accordinglyor each
contest type, there are both shtemtm prizes and lonrg
term incentives. Competitions typically include prizes for
1R plases and at leagt bne rupngn Some contests also
include milestone prizes that are paid based on- mid
competition deliverables. In addition, there may be
incentives for submission reliability over time and for
continued
These are all in addition to opportunities for additional
participation as a reviewer or -@ilot based on historic
competition success.

6.3. Benefits of Competition in

Development

The competitionbased development model is successful
for a number of reasons. Some of them are that:

di spl aye

particdlpaRum®a, pirlii ke



1. The development conducted through competitions
does not depend on the knowledge or availability of
any particular individual as a single point of failure

2. Thee are innovation benefits that come from
reachingout to a global pool of solvers who have a
diversity of skills and experience, and bring their
creativity to a particular task at hand

3. The contest judging process inherently includes a
detailed review process for assuring the quality of
work.

4. Individuals self-select the tasks on which they
choose to perform, and for which they are motivated
and believe that they have the ability to be
successful

5. Winning submitters are paid a fixed price for the
deliverables, and are paid only if their deliverables
meet mhimum criteria and are delivered by the
deadline

T o p Co dpatforinshashundreds of new registrants
each week and thousands of active participanihe
platform is therefore likely tdhave individuals with the
necessary skills and willingness to pepate ina given
technologyrelated task. Of course, these significant
benefits come with some requirements. Problems must be
presented in a format that is suitable for competition.
TopCoder hasiad to develogxpertise in developing the
formulation of problems and presenting them to a
community so that they can be solved in a systematic
manner. Also development environments and test data
must be provided in a way that is accessible to the
community.

6.4. Benefits of Collaborative

Competition in Development

The collaboratively competitive development of Zero
Roboticsd platform, as per
based on competition, in that there are competitions for
each design and development task. These competitions
offer both monetary and nemonetry incentives for the
participants. Participation in competitions are entirely
voluntary and allows th@articipant completdlexibility

and control over the choice of projects. Incentive
structures for crowdsourcing challenges in the form of
prizes ca achieve societal influence in seven different
ways [19]:

Identifying excellence

Influencing public perception

Focusing communities on specific problems
Mobilizing new talent

Strengthening problersolving communities
Educating individuals

Mobilizing capital

Nogkrwbdr

9781-457705571/12/$26.00 ©2012 IEEE

While each challenge is inherently competitive, the
overall effort also includes a significant amount of
collaboration, both structured and unstructured.

1 Much of the collaboration in TopCoder is structured
collaboration, i.e. the TopCoder procedictates
how that collaboration takes place. Portions or all
of the deliverables created in one competition (e.g.,
software architecture designs) are used as
specifications for another competition. The
deliverables are created in a predetermined fotonat
make the communication of information as seamless
as possible. In addition, the architects and reviewers
in a competition work with the developers during
the competition to answer questions and to finalize
t he deliverabl es. A f
competition requires a developer to make changes in
response to minor errors or omissions identified by
the reviewers. This is similar to code reviews
conducted by many development organizations, but
takes place at each stage of the software creation
lifecycle, not just coding.

1 With respect to wunstructured collaboration,
discussion forums enable participants to ask
questions and discuss the requirements with the
architects, clients, and each other. This discussion
often adds additional detail or relievasbiguity in
the contestspecification. It also provides a record
of the reasoning for the design and implementation
decisions that are discussed. Even while members
compete against one another, their interests in
algorithms and software brings them tomamon
ground and members are typically willing to help
each other as well as teach and advise beginners.
The generaldiscussion forums are home to a very
active level ofinteractionabout topics of interest to
this community.

The glrucjueedh eoliagogafiom e TepGages medg!ys
important because it enables individuals with different
skill sets to address different parts of the problem to be
solved and enables distributed development. In other
wor ds, it all ows a #fAteamo
complexproblem without requiring the team members to
establish relationships with each other. It allows team
members to pick their contribution based on their interests
and skills. Additionally, the structure of the collaboration
process makes e aamtributioa and
interaction transparent to the other participants. The
documentatiordeveloped at each staggecritical because

the members of the team can keep changing, so the
combined knowledge exists not in the experience of the
individuals alone bt in the documentation and process.

On the other hand, this collaboration structure does add
overhead. Since communication is limited to the written
documentation and the forums, the interface definitions
and documentation are required at every stage.
Collaboration with another individual requires at least

f

t

(0]

me mk



some written specification of the task, and evaluation of
results. At times, particularly when a small, fast change is
needed, this overhead seems to take longer than it would
if one could just callup the developer on a team and
request the change. However, there is not just one
developer who can make the change, and so the
availability of 6t hed
determinative of whether the change can be made.
6.5. Development of Complex Sytems
Crowdsourcing is not just for a single problem using a
single contest to solve it. Large problems can also be
broken down into smaller sytroblems that each can be
solved by a contest. For example, a computational
problem might require an algorithaompetition to obtain

an algorithm that would solve a problem, and a software
component design competition and a software component
development competition after that to implement the
result of the algorithm competition in a useful framework
for use by N/SA.

On the TopCoder
typically
show the series of competitions scheduled and estimated
costs for delivering them. The game plans do not have
particular individuals associatedth each taskrather the
competitors decidavhetherto participate inthe contest

for each set of deliverables. Predictions can be made
based on past history and the competition parameters
(e.g., competition type, pricing, timing) what the
likelihood of successful completion will be during the
competition lifespan.

platform,development projects

For a large, complex project such as the Zero Robotics
competition and development environmewg divided

the project into severahodulesand usal the traditional
Software Development f@ Cycle (SDLC) for each
module Each phase of the SDLC loop is a crowdsourcing
contest and its outputs are fed into the next phase as input
to the next crowdsourcing contea shown irFigure 6.
Parallel development is therefore possible and interface
requirements are very strict (defined by the TC project
manageri the only managerially hired position in the
entire process) to prevent misfits later.

The top levephases of the lifecycle are:
Conceptualization and Specification
Architecture

Component Production

Application Assembly

Certification

Deployment

oukwhE

A large project is broken into multiple modules that need
to be developed; each module is developed thrabgh
above phases and each phase has one or more contests.

Business
9

Conceptualization competitions  develop

9781-457705571/12/$26.00 ©2012 IEEE

Requirements documents and Higbvel Use cases as
solutions  These are then provided as inputs to
Specification competitions, which develop Applitan
Requirements Documents, Use Cases, Activity Diagrams,
and Storyboard and/or Prototypes. These design
specification deliverables are then usedAirchitecture

d e v ecbnapptions too aeveldp hModulé and rSysténs Desigio t

Specifications, Sequence Diagrams, Interf@tagrams,

and Component Design Specifications. Test cases also
may be developed at this time, by conducting testing
competitions. The Component Design Specifications are
used in competitions to design and develogusable
software components that implemethe design. In
Application Assemblthe components are assembled and
the deployment requirements documented. In
Certification, the assembled software is thoroughly tested
through testing competitionsand the application is
deployed on a staging serviar a final integrated set of
tests. After the completion of all the phases, the solution
is ready for deployment.Figure 6 does not show all of
the competitions currently offered by TopCoder. Neither
is this the only way that crowdsourcing can be used to
develop large, complex systems. Other contests that have

ar GanmePlatn neadh eoduut | ei 0t balgra shown include algorithmic problswiving,

graphic desig, user interface design, idea generation,
wireframes, prototyping, etc. that might be employed in
the development of a technology solution. Zero Robotics
development included many such contests.

7. CROWDSOURCING
INFRASTRUCTURE

CONTEST

Conducting a compeétdn is much more involved than
simply posting the challenge to a web sittmportant
elements of the collaborative competitive infrastructure
provided bythe TopCodercompetition platformused to
develop the ZRveb interface are:

1. A web interface to makeompetitionsstructured,
organized, compelling and interestingTopCoder
performs these functions using its website:
www.topcoder.com

2. A web interface that allows easyroblem
disambiguation,  formulation, = communication,
validation, recognition and rewards

3. Behindthescenes infrastructure for handling
competiton participanfspaperwork and inquiries,
generating and assuring assent with competition
rules, and for legal compliance

4. Intellectual property rules and documeintplace to
enable the conduct of competitictosdevelop assets
for enterprise or governmealients.

Infrastructure to allowcustomersto create and
launch their own contests and follow a workflow to
administer the challenge to completion and transfer
of assets



http://www.topcoder.com/

6. A centralized web location for participarits obtain
problems, submit solutions, judge submissions, view
results, scores, statistics, andoso

7. A central web location for discussion and

s q u awithediscussion boards and a wiki to share
information.
8. Profiles of and information about the different

the community, and are not easily mocked or simulated,
can bemore challenging because this typically requires
additional client personnel to help identify the pieces that
can be developed byeghcommunity and to integrate and

interacti on, providing t hdeplogthemima the cliept enwiiortmint. a

it own

Over the past three years, TopCoder has run over 4500

challenges with 91% completing successfully. Among

competitorsal | of a member 6s a ®ther fagtors, TepSodar atlibutes thedigherate of success

in realtime and statistics on performance made
publicly available.

9. Collaborative software delopment infrastructure
such as source code control, wiki content
managemengtc.

10. Quick fix mechanisms to make time critical and
small corrections to software developed during
regular contests. At TopCoder, h@t stint
chall engeBsg Hurdl | &riddg R&ce
competitionsare specificallydesigned to elicit a
working solution to a small problemThese
challenges are usetd update content, to develop
quick fixes to technologwssets and documentation
where the contest endsice a demonstrable solution
is submited, often in anater of hours.

TopCoderds clients can i de ngomgettiontregistratipn ang linethe diseussigno foryms.

even contribute to picking and choosing what parts of the
process to use. This approach is particularly -aeifed

for the development of new systems, where the

integration points with existing stgns are weltlefined

and can be tested by the community or accurately
simulated. Bugs in existing systems can also be fixed
using the same types of development environment made
available to the community.

Development of upgrades to existing systems rashe
integration points with other systems are not available to

to the methodiogy of breaking down a task and honing in
the key elements, the large size of the community
covering a variety of technology disciplines, and the
ability to use of historical data to design and price the
challenges in a way that they will be successful.
Additionally, TopCoder has over the past ten rgea
developed and refined thesentests, attracting hundreds
of thousands oftechnologistsand the infrastructure to

support them.

With the respect to 9% of challenges that are not

successfyy TopCoder és view i

contribute.  Most typically, a competition does not

S

t hat

complete successfully because the specification is unclear

or is too complicated and is asking for more than is

typically requested for that competition typ&he main

indicator of this is the activityi or lack thereofi in

anc

Sometimes the market is changing, or TopCoder is testing

the market, or the prize amounts are set too low to
encourage sufficient pécipation on a particular problem.

Usually, in these cases TopCoder can achieve a successful

result by dividing the contest specification into multiple

parts, and reposting as separate competitions, or by just

raising the prizes. Of course, when Topé€od
experiments with pricing, changes competition types or

deliverables, or adds a new competition type, there is an
expectation that some competitions may not complete
successfully as the market adjusts to the change.

The TopCoder Platform - Software Application Development Methodology

Output Qutput

Figure 61 Example Software Application Development Methodology

10
9781-4577-0557-1/12/$26.00 ©2012 IEEE



BE) Proiects InSPIRE

Overview

A Dashboard = INSPIRE

a Contests

Contests

7i%28,51850 0/%0.00 3/816,995.00

istrants

Start Date

End Date

Application Front-End 08/08/2011 23:00 | 06/12/2011 17:00

16

23/885,668 .80

5}

8

i

17

Finished

Submissions

18 19 20 21

Forums

» Looking for Community Portal? Go There Now

Search Settings Reports

Get A Copilot

Launch New Contest

B® My Projects

Create a New Project

0/$0.00

Status Select a Project

InSPIRE -

48 Completed IE viewEdit
Sort Contests by | Title [=]
18 Completed = View/Edit
— R L @ Zero Robotics Request Tracker (g |7
Assembly
o = INSPIRE Zero Robotics Back End
|= View/Edit
18 ® submission I & eies 7u]
@ INSPRE Zero Robotics IDE ]
164 @ Final Fix = ViewEdit =T
Module Assembly - INSPIRE Zero
@ Robotics Liferay Customization
y
174 Completed & viewEdit FIZEiT
Module Assembly - INSPIRE Zero
@ Robotics Website Integration
257 Completed = ViewEdit LT

Module Assembly - INSPIRE Zero
@ Robotics User Profile Portiet

22 23 24 25 26 27 28 29 30 1 Select a Customer

[ InSPRE Zero Robotics Websts 5
Storyboard Update ET (GMT-400) ET (GWT-400) =
Application Front-£nd | (= INSPIRE Zero Robotics Website 05M8/2011 17:00 | 0S27/2011 17:00 20
Design Storyboard ET (GMT-400) ET (GWT-400) =
INSPIRE Zero Robotics IDE 07/23/2011 12:00 | 08/10/2011 06:05
Architecturs O e ET (GMT-400) ET (GMT-400) =2
InSPIRE Zero Robotics Admin O07H4/2011 11:36 | 08/02/2011 03:41
SIETEETE & Archttecture ET (GMT-400) ET (GMT-400) 1z
INSPIRE Zero Robotics Website 06/24/2011 03:19 | 07/13/2011 12:50 -
Archiecturs O viemars ET (GMT-400) ET (GMT-400} 1=
o () luSPIRE Zero Anbotics DF BackEnd | 08/12/201109:30 | 08/30/2011 1045 18
rentestr Architecture. ET (GMT-400) ET (GMT-200) b=
6 7 8 9 10 11 12 13 14 15
InSPIRE

InSPIRE Zero Robotics Front End Conceptualization (Conceptualizat...
InSPIRE Zera Robotics Website Wireframe (Wireframes) 21.0 days, 5.4.2011
InSPIRE Zero Robotics Website Storyboard (Application Front-End ...
InSPIRE Zero Robotics Website Wireframe Update (Wireframes) reframe Update (Wireframes), 9.5 days, 5.20.2011
InSPIRE Zera Robotics Front End Wireframes (Wireframes)

Zero Robotics Programming Tournament Website Copilot (Copilot ...

InSPIRE Zero Robotics IDE Back-End Architecture (Architecture)

: Zero Robotics Webstte Storyboard (Appiication Front-End Design), 16.0 days, 5.19.2011

INSPIRE Zere Robotics Front End Wireframes (Wireframes), 18.0 days, 5.25.2011

Zero Robotics Programming Tournament Website Copilot (Copiot Posting), 11.3 days, 5.25.2011

InSPIRE Zero Robotics IDE Back-End Architecture (Architecture), 15.7 days, 527 2011

All Customers -
Select a Project

InSPIRE -

Sort Contests by | Title |z|

m

INSPIRE Zero Robotics Front End
Conceptualization

InSPIRE Zera Robotics Website Specification (Specification) |

| INSPIRE Zero Robotics Website Specificat TEREZI I DEEEE ()

InSPIRE Zera Robotics Website Storyboard Update (Application Fro...

[ ] InSPIRE Zero Robotics Website Storyboard Update (Application Front-End Des

InSPIRE Zero Robotics Website UI Prototype - Part I (UI Prototype C... !

| InSPIRE Zero Robotics Website Ul Prototype - Part | (Ul Prototy

End Architecture

Zero Robotics Programming o]
Tournament Webste Copiot

InSPIRE Zera Robotics Front End Storyboard (Web Design) |

| INSPIRE Zero Robotics Front End Storyboard (Web.

INSPIRE Zero Robotics Website E

InSPIRE Zero Robotics IDE Back-End Architecture (Architecture)

| insPi Specification

InSPIRE Zero Robotics IDE Front End Specification (Specification)

| InSPIRE Zero Ro INSPIRE Zero Robotics Website

System Assembly - InSPIRE Zero Robotics Website (Assembly Com...
InSPIRE Zera Robotics Website UI Protatype - Part IT (UI Prototype ...
InSPIRE Zero Robotics Front End Admin Specification (Specification)
InSPIRE Zero Robotics IDE Front End UI Prototype (UI Prototype Com..
InSPIRE Zera Robotics Website Architecture (Architecture)

InSPIRE Zero Robotics Tutorials Section Layout and Design (Web D...
InSPIRE Zero Robotics Farm Integration {Conceptualization)

InSPIRE Zera Robotics Game Naming and Logo Design Contest (Lo...

Ul Prototype - Part|

| System Assen

INSPIRE Zero Robotics Website

| InSPIRE Zerc Architecture

INSPIRE Zero Robotics IDE Front
End Specification

Architecture

INSPIRE Zero Robotics IDE m
INSPIRE Zero Robotics IDE Back- m
End Architecture

System Assembly - nSPRE Zero
Robotics Website

Figure 7: List of contest details and schedule of the INSPIRBrogram to develop the Zero Robotics Web Interface

8. CROWDSOURCING
RESULTS

CONTEST

The Zero Robotics infrastructure was built using the 2010

Zero Robotics web site as prototype via TopCoder
crowdsourcing contest$he programhas aTopCoderco-
pilot who interacts regularly withopCoder andIT and
provides technical support to tbtempetition participants
MIT6 s r ot answeratechnical questions relating to
the requirements ireach of the contests and provide
detailed feedback to the -@ilot and members.As
mentionedn Section 7, therare

11

9781-4577-0557-1/12/$26.00 ©2012 IEEE

online tools available to track the ongoing contests.
Figure7 shows a screenshot of the TopCo@eckpittool
displayingthe list of contests, present and past, statjstics

and timdine.

At a high level| the developmenttasks

undertakerusing collaborative competitiomere:

Integration of the Graphical Editor being built
separately by Aurora Flight Sciences

Development of the Zero Roboticeommunity
website

Development of the SPHERES integrated
programmingenvironmentusing the 2010 version as
a prototype

Integration of the SPHERERgh-fidelity simulation
into the TopCoderserver compilation and testing
0 &mo , whi ch i s -endhhandlingoabdi s t
implementing the ZR simulation requests

b



A GamePlan schedulevasdevelopedor each higHevel
task, divided into the  following phases:
Conceptualization, Wireframe(to design the look)
Storyboard(to design the feel)Architecture, Assembly,
Testing and Deployment-or each task and each phase, a
list of required contests were made and recorded within
the GamePlan. Part of theGamePlan for the frontend
task is shown irrigure8. The horizontal blocks represent
each phase and the rows represent an individual contest.
The columns are the timeline; the pink regions mark off
the period when a specific contastscheduled to take
place.

oo sof k]

n jrexafoxcafocofxooafonoofooof

Figure 8: Front End game plan

Each individual contestasted between =1days and
awarded prizes between $1$R500 depending on its
requirements and scomé# the contestand weredefined
based oriTop C o d histodical experience in thenarket
for each type of deliverahl@he crowdsourcing contests
included 3 types graphic design Studicontests (which
have been described earlier; evaluated by Mind
TopCodeJ, software contests (which have the estbne
and submission phases but are evaluated by reviewers
selected from within the dpCoder community by the
program manager) andi@ race contest@vhere thefirst
member of the ®pCodercommunityto submit a solution
wins).

Each Studio contest began with the release of a set of
requirements and the inputs needed by the participants.
Members of the community registered to participate in the
contest during the ORegistr
launched, participants could review thexuirements and
work on the problem. For some competitions, such as the
conceptualization and wireframe competitions, -nedfy
through the contest participants were required to submit a
Ami |l estoned submission.

team reviewed # milestone submissions and provided
feedback to participants, awarding small prizes to up to
five participants. Participants integrated the milestone
feedback into their work, improved upon it and submitted
their full solution by the contest deadline.l #he entries
were then evaluated and first and second place awarded
prizes. The winners are responsible for improving their
submissioraccordingtd he r evi ewer 6s f i
thepostt ont est OFi nal Fi xo

12
9781-4577-0557-1/12/$26.00 ©2012 IEEE

An example ofucha contest ishe Front End Storyboard
Challenge. The purpose of this challenge was to generate
ideas for a look and feel for theweb-based integrated
development environment to be used by students to
program satellites. The prizes for this competition were
$1500 for firstplace and $500 for second place. There
were 5 milestone prizes of $75/each. Participants were
provided with a description of the solution needed, along
with the conceptualization document amdreframes that
had been developed in previous competitionsin
response, the participants provided a series of graphic
images that showecteative examples of how tlsereens
might appear The competition began June 9, 2011 at
9am Eastern. Milestone submissions were due June 12,
2011 at 9am Eastern, and the fisabmissions due June
15, 2011. The winnersereannounced on June 21, 2011.
The milestone submissions alled/the solvers to get
feedback about their submissions, opening lines of
communication. It also hedl the competition sponsors
determinewhethe therewassufficient participation in the
competition. In this competition, there were 18

registrants, with 10 submissions at the milestone and 4
final submissions. Thébesb storyboardas determined

by MIT and TopCode(Figure9) wassdected from these

4 submissions and served as an input into the architecture
group of contests for the website.

fics” to new heighis, kterally. The robots are miniaure satelites called SPHERES and the final competision of

Live from the
International
Space Station!

| Astronaut Ron Garan 3

| phones home and
| gets the finals of the
|'ZR Summer SPHERES__

= _" ogram under way!
1@345s ‘

at I 0OIl pPprnasedou.

been aMcted by intermetipaws:
utages, pleaze 5

teams that have e may b eligible for
adiing due 10 intemetpower oUtag s an email

e 20 SIMUIaBON COMPENNoN. VW 3re CUITently working on Making e
ideas af the flal Aoor demo

-----

nt e

Il C e

L Ie C U

Figure 9: Zero Robotics Website, lookdesigned by the
storyboard contest

The contests to design the look and feel of the website

R enebsieWirdfréme anl Btdrybdard doftests) sl welf ds t

contests to design the name and logo for the Zero
Robotics games highlights t
the crowdsourcing model. Evaluation was done and prizes
were awarded baseuwithioputfréhh Tds |
TopCoder While the storyboard competition did very

well, the design of the logo did not yield an integrated

result satisfactory to MIT, in spite ofl2 final
SuBnhissidh® MM &véstaBle tb fihalize a logo by putting

h e

p h a stggether contributions from 2 winning submissions. Had

MIT not been able to do that, TopCoder could have run



another logo contest using thenning submissions as
inputs and so conducted amerative development cycle

While theStudio and software developmeoabntestsvere
the main development toolssedto furtherdevelopment
Zero Robotics used Top CodBug Race contests for fix
quick, timecritical bugs. A short problem statement and
the appropate section of design or code wateased for
eachcompetitionand the first competitor to satisfactorily
submit a fix is awarded a prize. BlRace competitions
can be used foquick changes.short tasks thatl i d n 6 t
done during acontest and integrationof solutions from
parallel contestd they are essentially Studio contests
where the first member to submit an acceptable solution
wins. The BugRace tracking system allows clients and
reviewers to easily createquest into order to obtathe
specific fixes required.These competitions typically
range fromaboutone day toa week long andby design
have significantly less participation than thevelopment
cont est s. RA&dhednpétionsg have takers
becaus the task is very specific and needquickly
available, specific skillsThe participant works closely
with the person who submitted the ticket and resolves the
problem. This capability highlights the <&rowd
productiordbenefitof the crowdsourcingnodel.

It is worth mentioninghat the crowdsourcing model used
by TopCoder for Zero Robotics is different fromther
online staffing outsourcing resourcesites that are
availabile such as oDeslor eLance in that those sites
allow their customergo hire a spdfic person for a job,
follow up with him and pay him after completiothe
focus is on selecting an individual, and tempetition is

in the candidate selection process rather than the solution
selection process. Alsin those modelgvery contractor
typically gets paidrather tharonly the winnersThe Bug
Race competitions differ from this model in that they are
a request for a deliverables, rather than a specific person,
even though the result is that a small number of
individuals completed most ofghtasks.

8.1. ContestParticipation

The participation in the contests for the development of
Zero Roboticswas generally what would be expected.
Therewere 54 Studioand softwarecontests in 12 broad
categories held among members of th&opCoder
communitybetween April 2011 to December 2011. $he
contests cumulatively receiv@®7 registrationgnotice of
intent to participate)149 full submissiongnd 57 prizes
for these contestwereawarded There have been a total
of 239 unique participant® the 54 contests

Figure 10 shows data from the 54 contests. The contests
have been sorted ithe order of occurrence in the
development cycle shown irFigure 6. Registration
represents the amount of initial interest in the contest and
submissions represent the final output from the contest, of
which one is chosen to move forward per esht

13
9781-4577-0557-1/12/$26.00 ©2012 IEEE

Specification contests that include making wireframes,
storyboards, web design and application front end design
as well as the assembly contests attracted the highest
number of registrants possibly due to the large number of
people who possess thequired design and software
skills. Component production contests include
prototyping tasks. On the submissions desi
conceptualization is lowest, possibly due to the specificity
of the task (abstraction of the given project required rather
than execution foa defined task using piexisting skills

Oséch as designit will be shown later usingigure12 that

the submissions number and prize value turns out to be
correlaed because the prize values are determined by the
market, to induc¢he desired levels gfarticipation.

Conceptualization

Specification

srchivecrure | S

Component Production _

Component Assembly

| ! |
5 10 15 20
Average number of registrants per contest, categorized

(=]

Conceptualization

Specification

Architecture _

ComponentProduction h

|
1 2 3 4 5 6
Average number of submissions per contest, categorized

Component Assembly

(=]

Figure 10: The average mmber of users that
registered (top) and submitted valid solutions(bottom)
per contest, arranged bybroad contestcategory

Architecture contests, which involve discussing the
software requirements with the client and reviewers,
documenting them in detail and making test suites and
test scenarios, had the most discussion threads en th
forums. Architecture contests are also the critical point for
technical design, and there were occasions where MIT
rejected the winning entries because they did not meet the
specifications. The baednd conceptualization and
architecture contest was cared 3 times, and ultimately
the community member who won the architecture contest
not only designed, but also assembled and supported the
back end all through.



We also noticed that module assembly had a skewed
number of registrations vs. submissions. A
disproportionately large number of people registered for
these contests. It appears that they gauged their
probability of winning by the discussion forum content;
and a small subset of the participants ultimately followed
through to submit a solution. Faexample, the User
Profile Portlet Assembly contest had 45 unigue registrants
but was dominated by the community member who won
the most assembly contests in the INSPIRE project. This
phenomenon was seen in multiple assembly coniests
many registrants bventually 34 submissions.

As mentioned above, fixingugs that arédentifiedin the
productionsoftware small changes and integration tasks
are performed using Bug Race competitioty. MIT or

the ZR website/IDE users are documented in the
TopCoder gstem in the form of &ssuereport. Unlike, the
Studio contests, there is no competition for the best
solution of aBug Race. Instead, community members
contact the ZR TC program manager ofpilot with the
request to take up tHeug Racecompetitionand thefirst
acceptable solutiors selected to fix the bug. The fixed
piece of software is then merged into the existing
framework. Therewere 163 Bug Race competitions
between September 2011 and December 2011 with 32
winners
8.2. Contest Prizes

MIT and TopCoder spent $187,260 on prizes for the 54
Studio and software contests and the 163 Bug Race
competitions, including reviewer payments andpdot
support. This is only the payments to the community, and
does not includ costs for the 2 MIT graduate students
the TopCoder platform,or the TopCoder platform
manager. Given that 239 unique members of the
community participated in the contests and bug races,
from one viewpoint, we wer
participation at the rate of $800 per user over a period of
about half a year. However, among the participants
(counted as those who registered for a crowdsourcing
contest or a reviewer), there were 90 individuals who won
prize money. TopCoder therefore paid an averaj
$2000 per winning competition member over the 6 month
period, although the payments were skewed toward larger
amounts to a smaller group. Therefore, the number of
people working on our problems was far greater than the
number of people we paid. Thise&s raise the concern of
retention since making any money is based &n
probability of successHowever, since all participants
have access t o t he di scus
histories, they are expected to make educated predictions
on their wh and participate accordingly. As shown in
previous literature, access to complete information
actually encourages the participation thfe strongest
contenders.

14
9781-4577-0557-1/12/$26.00 ©2012 IEEE

Figure 11 captures the 54 Studio contests run over a
period of 7 months in terms of the number of unique
members who registered to participate i.e. expressed
interest to compete and the number of catgkolutions
submitted at the end of the contest. The contests have
been arranged in decreasing order of efficiency, defined
as the ratio of submissions to registrants. The overall
efficiency over all the contests was ~ 15% and the figure
visually indicaes a large number of contests that have an
abnormally low efficiency, which can be due to a variety
of reasons. The user profile portlet assembly contest and
backend architecture contests have low numbers because
the pool of potential participants contath a member
(different for each of the 2 contests) who was known to
have a nearly 100% winning streak in Zero Robotics
contests. As a result, the other participants backed out
after gauging a lowered chance of winning. On the other
hand, the highly efficiet contests like the game name and
logo design contest was a very creative one that did not
require very specific skills and all the participants
competing in the category had no prior history with ZR.
Low efficiency can be a source of concern since it
potentially indicates failure to retain the captured interest
in a contest and additional effort is required to increase
active participation such as increasing the prize money,
advertising on the TC website or actively reaching out to
skilled members. Thissiespecially required for contests
where there are no strong competitors in the participant
pool.

45

T T T r
User Profile Portlet Assembly: r/_/:'

4t

35§

Ba;: k-end
Archtecture

30 Wireframes

and Design

254

#of unigue users per contest

I cgistrants

5 Subrissions

i
0 10 20
Contests arranged in descending order of efficiency

[=in]

Figure 11: Number of users per contest for the Zero
Robotics Development Program

Figure 12 shows the prize money distributed for the
sdevslopment of, prpgyists inggch of theeCaipgariessligted.
The vertical blue line marks the average money paid per
payment, which is $356 (525 paymentvere made,
including copilot and reviewer payments. Contest
categories as conceptualization or conceptualization are
rewarded much higher than the average prize money in
order to attract members to participate in them, in a
market based determination @wards. Contests that



appeal to a broader skillset (as seen earlier by the number
of registrants inFigure 11) such as prototyping i.e.
component production and degiment did not require as
high a prize for gaining potential interest. The number of
contests for conceptualization and architecture is also far
lesser than, say, assembly. Correlation wkigure 10
shows that contests that had the lower number of
submissions (e.g. Conceptualization) required the highest
value of prizes and those that had higher number of
submissions (e.g. specification and component
producation) hadower amount of prizes.

Conceptuslization N
Specification [N

Architecture *

—

|
gl
|
1
|
j
|
1
1
Deployment [
|
0

Component Production

Component Assembly

200 400 600 800

Average value of Payments per Catergoryin §

1000

Figure 12 Dollars spent as prize money for each
contest categoryThe blue vertical line is the mean of
all the contest prizesun through December 2012.

From the
dominating the contests can find a good source of income,
no matter which category he chooses to dominate in. This
leads tdoyalty thatis very useful because not only does it
retain the good quality participants but also provides
field for Bug Race cmpetitors. Figure 13 shows the
cumulative earnings of the top ldarnersin the ZR
crowdsourcing contestsThese 11 highest earners among
the 90 total winners claimed 62% of the total money spent
on all the payments. e individual who dominated the
assembly contests (maximum in number and average in
prizes) claimed nearly 26% of the total prize and reviewer
money in assembly contests. Since the number of
assembly contests is high, thevasopportunity for other
participantsto compete for the dominating position and
make significant prize money. Moreovet,of the t@ 11
winners arethose who dominated thessembly contest
where inthe lower 3 have claimed upto 5% of the
assembly prize money. The member who won the initial
architecture contest for designing the bacid of the IDE
was also went on to architect the entire bank and,
since the baclend isthe heart of the ZR simulator, he
monopolized all subsequent baekd contests as wels

a result, 100% of the baend prizes were awarded to
that individual The individual who dominated the
architecture contests claimed nearly 45% of the
architecture pres. Thisappears to ba direct result of
the fact that architects need to clearly understand the

15
9781-4577-0557-1/12/$26.00 ©2012 IEEE

parti ci pamparteifant poi nt

client requirements and document them precisely in order
to do well in the contestd.he table inFigure 13 shows
three of the highest earning categories (as established in
Figure12) and the percentage of the total earnings in that
category that was claimed by the participant who claimed
the highest in that categoryery obviously, it pays very
wel | t o Obasticimant.il oy al

Category % of total
payment
category

Conceptualization 68%

Architecture 45%

Assembly 26%

of Vi ew,

a
Figure 13: Prize money in $ of the top 12 community
members in terms of total earningsand the % of
monopoly in each category

The il oyal o participants h
conversing with MIT on the TopCoder forums over many
conests and are well versed with the ZR framework,
increasing their chances of winning contests due to their
subject matter expertise. From the perspective of the
customer, the phenomenon of #
the effort of educating new particiggn on the
background of the ZR framework. For this reason,
TopCoder provides incentives in order to encourage
member loyalty. Apart from domination opportunities in
contests as seen in the statistics above, loyal members (as
evaluated by yt hreaitri n@d elanadb i
participation) are given an extra payments in addition to

the percontest prize money. While this seems to favor

partial monopolization of a market that is inherently
supposed to be competitive in order to produce quality,

the caveats that the groups of people who dominate the
contests are setthosen from all around the globe, who

have competitively established their position through the
process of crowdsourcing. It would been much harder, if

at all possible, to find such a match lbgking locally for

such a candidate, hiring him fitlme and managerially
requiring that he keep up his standards of workll












