

D-SHIELD: Distributed Spacecraft with Heuristic Intelligence to Enable Logistical Decisions

Sreeja Nag NASA Ames Research Center/BAER Institute

Co-Authors: Mahta Moghaddam (University of Southern California), Daniel Selva (Texas A&M University), Jeremy Frank (NASA Ames Research Center), Vinay Ravindra (ARC), Richard Levinson (ARC), *Emmanuel Sin (UCB), Amir Azemati (USC), Ben Gorr (TAMU), Ryan Ketzner (KSC), Alan Aguilar (TAMU),* Ruzbeh Akbar (MIT), Alan Li (ARC)

Background: Motivation

- Multi-payload, multi-spacecraft constellation scheduling for spatio-temporally varying science observations
- Small Sat constellation + Full-body reorientation agility + scheduling autonomy
 More Coverage, for any given number of satellites in any given orbits
- Ground scheduling algorithm allows 2-sat, 1-imager constellation over 12 hours to observe 2.5x compared to the fixed pointing approach. 1.5x with a 4-sat constellation
- Onboard scheduling algorithm allows 24-sat, 1-rainradar constellation to observe ~7% more flood magnitude than ground scheduling

Published Use Cases:

- 1. Land coverage and coral tracking (COSPAR ASR)
- 2. Cyclone tracking (IEEE TGRS)
- 3. Urban Floods (J.Hydrology)

D-SHIELD Proposal

Science Relevancy Scenario: Urban Floods

Data: Dartmouth Flood Observatory (Brakenridge 2012)

Results: S. Nag, et al, "Autonomous Scheduling of Agile Spacecraft Constellations with Delay Tolerant Networking for Reactive Imaging", ICAPS SPARK Workshop, Berkeley CA, July 2019

Both onboard and offline versions performed ~98% better than constellations without agility.

Results: S. Nag, et al, "Designing a Disruption Tolerant Network for Reactive Spacecraft Constellations", AIAA ASCEND, Nov 2020,

Goal: Use a combination of spaceborne radar, radiometers, reflectometers to make spatio-temporal measurements that will reduce soil moisture uncertainty

Traditional Solution: Design a single or constellation of instruments (size, altitude) to address spatio-temporal trade-offs (<u>underscored</u> in conflict with all others)

<i>Radiometric:</i> Noise sigma Speckle Kp	Spatial Metrics: <u>Resolution => Static Uncertainty</u> Coverage => Global Understanding	<i>Temporal Metrics:</i> Revisit => Dynamic Uncertainty Revisit => Global Understanding
--	---	---

Baseline = SMAP Conical Scanning:

-30dB sigNEZ ; 450m along track (AT) resolution ; 3 day global coverage+revisit

Alternative = Science-based Intelligent Planning of Stripmap SAR:

-30dB sigNEZ ; optimized* spatial resolution at the cost of speckle, coverage, revisit ~ to be addressed by more looks + measurements using constellation + intelligent agility

* ~7m AT and >250m CT rescue

NASA

Sources of variation over the global 9km tile grid:

- 1. Soil type and vegetation
- 2. Season and solar conditions
- 3. Precipitation
- 4. Saturation of Soil

International Geosphere–Biosphere Programme (IGBP) 16 classes distilled into 5 relevant for Soil Moisture: Forest, Shrubland, Cropland, Grassland, Bare

Ignoring water, wetland, urban, frozen

6

Goal: Measure to reduce Soil Moisture Uncertainties

Goal: Measure to reduce Soil Moisture Uncertainties

0 079

Sources of variation over the global 9km tile grid:

- 1. Soil type and vegetation
- 2. Season and solar conditions
- 3. Precipitation
- 4. Saturation of Soil

0 236

SMAP saturated pixel product globally available every 3 days. Interesting pixels are those that are not saturated and there has been rain recently...

Hourly precipitation forecast from GEOS FP in Cubed-sphere grid C720 resolution (12 km) and ~30km lat-lon. Using PRECTOT - Total precipitation (kg m-2 s-1) ...

NASA

Addressing Temporal Resolution / Science Needs

Temporally close measurements (just as neighboring pixels) can be combined to reduce speckle noise. Use inverse modeling to find maximum ΔT up to which SM dynamism does not prevent meaningful integration => ΔT =2hours

1000-

				Shrubland, wet period					
	Table B Coding:		Sat#1 Pay#1	Sat#1 Pay#2	Sat#2 Pay#1	Sat#2 Pay#2	M.E.E.SM		
	Code	Meaning	0	0	0	0			
	0	No operation	0	0	0	1	0.0039		
	1	35+/-5 deg inc, 1 obsvs	0	0	0	2	0.0048		
	2	45+/-5 deg inc, 1 obsvs	0	0	0	3	0.032		
	3	55+/-5 deg inc, 1 obsvs	0	0	0	4	0.0038		
	4	35+/-5 deg inc, 2 obsvs	0	0	0	5	0.0048		
	5	45+/-5 deg inc, 2 obsvs	0	0	0	6	0.0319		
	6	55+/-5 deg inc, 2 obsvs	0	0	1	1	0.0038		
			0	0	1	2	0.0041		
combinatorics for 2 sats		0	0	1	3	0.0161			
	Sinatono		0	0	1	4	0.0038		
			Ŭ	Ū	-	-	ſ		

Preliminary rules as a strawman for the science simulator:

6. Saturated + {rain or not} + seen recently

Planner-centric View to *decide* what to look at, *when* to look at it and *how* to look at it i.e. Choose command <instrument, viewing angle> for all available viewing times

Search space size:

- 24 hours (4 x 6-hour plans), 1-s increments (86.4k s)
- 2 instruments (L-band, P-band)
- 62 viewing angles/instrument
- 41,500 Access Time Points (TP)
- 1,662,486 Ground Positions (GP)

Pre-processing for choice flattening (reduces space by 65%) Uses Constraint Satisfaction Problem (CSP) Algorithm to find solution

Local and Global Heuristics are ongoing topics of research:

- 1. Max Coverage maximizes number of GPs seen but does not use science value
- 2. Choice Score maximizes science value without accounting for GPs seen
- 3. GPscore maximizes product of GPs and science value (*current POR*)
- 4. Other options: max GP choice rank, max RareGP (TBD with improved science simulator)

Over 24 hours by single sat: Interesting land cover GPs = 1.662m Rainy, unsat. GPs = 307.9k-309.8k Total observed GPs = 53.4k (3.2%) Rainy, unsat. observed GPs = 15.6k (~5%)

For 1 horizon of 6h:

Interesting land cover GPs = 637k 9.8k variables, 3.8mins to solve Adding all constraints and heuristics ~16k GP, 3.2k variables, 43s to solve

Very prelim Planner: Single Sat has 15% SMAP temporal coverage at 60x AT spatial reso

Video: https://sreejanag.github.io/Videos/eosim_demo_5x.mp4

Thank you!

Questions? Sreeja.Nag@nasa.gov

