Navigating the Deployment and
Downlink Tradespace for Earth
Imaging Constellations

Sreeja Nag'?, Steven P. Hughes! and Jacqueline J. Le Moigne!
'NASA Goddard Space Flight Center

’Bay Area Environmental Research Institute

Distributed Spacecraft Missions

Performance: Improve sampling in spatial (synthetic
apertures), temporal (constellations), spectral (fractionated
S/C), angular (formations) dimensions

Cost: Need more inter-operability planning, autonomy,
scheduling commands + data, ground station networks

llities in Operations: Flexibility, Reconfigurability, Scalability,
etc.

Better Design: Many conflicting variables and objectives thus
better methods needed in Phase A+ - coupled models,
machine learning, planning/scheduling methods, etc.

Tradespace exploration is required early in the design cycle
NASA GSFC is building a software tool called Tradespace
Analysis Tool for Constellations (TAT-C), to address some of
the above questions.

Information Flow

Tradespace .
rmsEEmmm. Search U;er inputs as
Request (TSR) (’:’];;i’fb‘jg Cotfs Call exe,
Graphical . Tradespace er arch
UF;er — Executive SearEh - =ost and
Driver Argument Risk Tool
Interface Iterator = input JSON
Store i Call exe, Write
TSR via REST Query per TSR or arch all arch , to
REST m disc
API il h Call methods on
2 anljf/ ,';ngzrgr b common objects, Orbit
ﬁ Data per unique orbitl - Propagator
: Knowledge : ===/ I d
m B Writetog | | f=—— rite to Reducer an
U ase disc S=E= and Metric Ephemeris Coverage
Module Coverage Module
: . Access Angles \ /
Visualizeresults

' Previous: S. Nag, S.P. Hughes, J.J. Le Moigne,
* Pink: Python "Streamlining the Design Tradespace for Earth

. Imaging Constellations", AIAA Space Conference,

Long Beach California, September 2016
3

Executive Driver

* Sets up global macros for the location of the user folder and exe folders

e Reads TSR json (and throws errors if incorrect)

* Creates classes, instantiates with TSR inputs or defaults to Landsat 8 values

Mission Specs — Overall concept parameters including launch and ground stations

class MissionConcepts:

def __init__(self,startEpoch=time.mktime(datetime.utcn

objectsOfInterest='Sun',groundStationOptions="'NENa
launchOptions='Primary',organization="Aca
propulsion=0):

self.startEpoch = startEpoch
self.areaOfInterest = areaOfInterest
self.objectsOfInterest = objectsOfInterest
self.groundStationOptions = groundStationOptions
self.launchOptions = launchOptions
self.organization = organization
self.performancePeriod = performancePeriod
self.duration = duration
self.propulsion = propulsion

Launch Vehicle — Primary/Secondary OR custom txt file w/ parameters as columns and LV as rows
Observatory Specs — Custom txt w/ parameters as columns (and unique satellites as rows)
Payload Specs — Custom txt w/ parameters as columns (and unique payload per sat as rows)
Satellite Orbits — Exact specs or ranges provided in the TSR

Output Bounds — Ranges provided in the TSR or not bounded

* Creates list for all available ground stations w/ lat, lon, rented and comm bands

* Gets Planet Labs ephemeris for ad-hoc, unmaintained constellation type

Executive Driver

* Sets up global macros for the location of the user folder and exe folders
e Reads TSR json (and throws errors if incorrect)

* Creates classes, instantiates with TSR inputs or defaults to Landsat 8 values
* Launch Vehicle — Primary/Secondary OR custom txt file w/ parameters as columns and LV as rows

class LaunchVehicle:
def __init__ (self,name = "Pegasus",
self.name = name

self.dryMass = dryMass + methods for reading TSR

self.propMass = propMass + methods for computing spread for precession
self.Isp = Isp constellations, provide fuel for maintenance,
self.payMass = payMass .

self.maxRelight = maxRelight number of satellites per launch, etc.
self.reliability = reliability + parameters for cost

self.cost = cost
self.mtbl = mtbl # days

* Observatory Specs — Custom txt w/ parameters as columns (and unique satellites as rows)

* Payload Specs — Custom txt w/ parameters as columns (and unique payload per sat as rows)
» Satellite Orbits — Exact specs or ranges provided in the TSR

* Qutput Bounds — Ranges provided in the TSR or not bounded

* Creates list for all available ground stations w/ lat, lon, rented and comm bands

* Gets Planet Labs ephemeris for ad-hoc, unmaintained constellation type

Executive Driver

* Sets up global macros for the location of the user folder and exe folders
e Reads TSR json (and throws errors if incorrect)

* Creates classes, instantiates with TSR inputs or defaults to Landsat 8 values
* Mission Specs — Overall concept parameters including launch and ground stations
* Observatory Specs — Custom txt w/ parameters as columns (and unique satellites as rows)

class ObservatorySpecifications:
def __init_ (self,obsMass=200,obsPower=150, obsVolume=300,a

N .
crossTrackSlewOfCenter=0,angularScanRate=0,an methods for reading TSR

self.obsMass = obsMass + Mass for computing LV numbers
self.obsPower = obsPower

self.obsVolume = obsVolume needed L
self.alongTrackConeAngle = alongTrackConeAngle + Communication bands for
self.crossTrackConeAngle = crossTrackConeAngle computing appropriate sround
self.alongTrackSlewOfCenter = alongTrackSlewOfCenter _p §app R g
self.crossTrackSlewOfCenter = crossTrackSlewOfCenter stations for downlink

self.angularScanRate = angularScanRate
self.angularScanStartPhase = angularScanStartPhase
self.communicationBand = communicationBand

* Payload Specs — Custom txt w/ parameters as columns (and unique payload per sat as rows)
» Satellite Orbits — Exact specs or ranges provided in the TSR
* Qutput Bounds — Ranges provided in the TSR or not bounded

* Creates list for all available ground stations w/ lat, lon, rented and comm bands

* Gets Planet Labs ephemeris for ad-hoc, unmaintained constellation type

Executive Driver

* Sets up global macros for the location of the user folder and exe folders
e Reads TSR json (and throws errors if incorrect)

* Creates classes, instantiates with TSR inputs or defaults to Landsat 8 values
* Mission Specs — Overall concept parameters including launch and ground stations
* Observatory Specs — Custom txt w/ parameters as columns (and unique satellites as rows)
* Payload Specs — Custom txt w/ parameters as columns (and unique payload per sat as rows)

class InstrumentSpecifications:
def _ init_ (self,instruConops=0, instruConopsPartner=
specReso=[50,60,70] ,minRadiometricReso=1

overallDataRate=1.5,solarConditions="no_ + methods for reading TSR

isRect=0, fovAT=15): .
self. instrucanops = instruConops + bands for aperture size for cost
self.instruConopsPartner = instruConopsPartner + FOV or sensor shape for RMOC
self.instruMass = instruMass .
self.instruPower = instruPower + solar conditions for RMOC angles
self.instruVolume = instruVolume + iFOV for RMOC

self.specBands = specBands

self.specReso = specReso
self.minRadiometricReso = minRadiometricReso
self.fovCT = fovCT

self.instFieldOfView = instFieldOfView
self.measurementTime = measurementTime
self.overallDataRate = overallDataRate
self.solarConditions = solarConditions

self.sunglintPref = sunglintPref
self.occultationAltitudes = occultationAltitudes
self.isRect = isRect

self.fovAT = fovAT

Executive Driver

* Sets up global macros for the location of the user folder and exe folders
e Reads TSR json (and throws errors if incorrect)

* Creates classes, instantiates with TSR inputs or defaults to Landsat 8 values
* Mission Specs — Overall concept parameters including launch and ground stations
* Observatory Specs — Custom txt w/ parameters as columns (and unique satellites as rows)
* Payload Specs — Custom txt w/ parameters as columns (and unique payload per sat as rows)
» Satellite Orbits — Exact specs or ranges provided in the TSR

class SatelliteOrbits:
def __ init_ (self,existingSatelliteOptions='null’,nu
specialOrbits="null’,propagationFidelit

self.existingSatelliteOptions = existingSatellit + ;
self.number0OfNewSats = numberOfNewSats methods for reading TSR
self.altitudeRange = altitudeRange + Methods to create full range of
self.inclinationRange = inclinationRange orbits to pass to RMOC

self.specialOrbits = specialOrbits
self.propagationFidelity = propagationFidelity

* Qutput Bounds — Ranges provided in the TSR or not bounded
* Creates list for all available ground stations w/ lat, lon, rented and comm bands

* Gets Planet Labs ephemeris for ad-hoc, unmaintained constellation type

Executive Driver

e ~~Creates classes, instantiates with TSR inputs or defaults to Landsat 8 values

° ~~Y

* Qutput Bounds — Ranges provided in the TSR or not bounded

class OutputBounds:
def _ init_ (self,timeToCoverage='null’', accessTin
alongOverlap="null',signalNoiseRatic
sunAzimuth="null',b spatialResolution=
objAzimuth="null',objRange="null’,ntL
self.timeToCoverage = timeToCoverage
self.accessTime = accessTime
self.downlinkLatency = downlinkLatency
self.revisitTime = revisitTime
self.crossOverlap = crossOverlap
self.alongOverlap = alongOverlap
self.signalNoiseRatio = signalNoiseRatio
self.dlAccessPerDay = dlAccessPerDay

self.obsZenith = obsZenith ;

+
self.obsAzimuth = obsAzimuth methods for re'adlr_]g TSR]
self.sunZenith = sunZenith + (Methods for filtering the variables
self.sunAzimuth = sunAzimuth : IF
self.spatialResolution = spatialResolution FO the TSR V\{Ith the ablllty tore
self.crossSwath = crossSwath introduce without a full rerun)

self.alongSwath = alongSwath
self.objZenith = objZenith
self.objAzimuth = objAzimuth
self.objRange = objRange
self.numPassesPM = numPassesPM

* Creates list for all available ground stations w/ lat, lon, rented and comm bands

e Gets Planet Labs ephemeris for ad-hoc, unmaintained constellation type .

Tradespace Search Iterator

Variables — Constellation type,

number of sats, altitude, mclmatlon

number of planes (unlform sats per
Iane?1 field of view or regard

aunch vehicle (affects dlspatch

batches and cost) ground station

number (affects performance only)

Number of satellites filtered by
output bounds, LV and GS restrlcted
to a provided max number. All else
are free variables.

Loops over all values over all
variables and creates the entire file
tree with JSON file inputs to CaR and
RMOC

Calls CaR exe per loop

Calls RMOC exe after creating the
entire file tree

Files in green stored after the exe
runs from RMOC or CaR

User Directory
——TradespaceSearchRequest.json
——InstrumentSpecifications.txt
——ObservatorySpecifications.txt
——Landsat_landImages.txt
—Mono

——O0rboooo

——Pnteoe_Payoo

| ——ReductionMetrics.json
| ——obs.csv

| ——angles.csv
——Pnto00_Payol
——Pntooo_Pay02
——O0rboeol

——O0rbooo2

——Ground

——GSo1
——=Groundstations.json
——GS02

—DSMs

——Subspace00000
——Manifest.json
——CostRisk.json
——gbl.csv
——1cl.csv
——CostOutput.json
——Subspaceo00ol
——Subspace00002

10

Types of Constellations

* Homo and Heterogeneous Walker Constellations i.e. a different altitude
inclination combination for each plane with a different RAAN

* Added precessing type constellations which spread in RAAN over time
due to being dropped off at slightly different altitudes and inclinations.

* The time required is a function of the differentials and chief orbit
* The differentials are a function of delta-V available, chief orbit and LV relights

* The delta-V available is a function of the LV, LV and payload mass, etc.

Time

Deployment + 0 months Deployment + 3 months Deployment + 6 months

e

—

Precessing Constellations

* The time

required to
spread out in
RAAN is a
function of the
differentials and
chief orbit

The differentials
are a function of
delta-V available,
chief orbit and LV
relights

The delta-V
available is a
function of the
LV, LV and
payload mass,
etc.

Difference in inclination in deg, between the deployments

Minimum number of days required for any two satellites, dropped
off sequantially by a rocket over 3 relights with given differentials,
to spread 90 deg in RAAN

'~ ~§300\ \ ~900 o
% \. s\A

@InltAlt = 300 km, Inc 30 deg
& Init Alt = 900 km, Inc = 30 deg
OFED Init Alt = 300 km, Inc = 60 deg
twmitAlt =900 km, Inc = 60 deg

Difference in altitude in km, between the deployments

Precessing Constellations

* The time required to spread out in
RAAN is a function of the
differentials and chief orbit

* The differentials are a function of
delta-V available, chief orbit and
relights

* Example shown for 3 relights and 4
dropoffs using my equation below
assuming equal differential-alt and inc
at every relight

* In a practical scenario, usually the fuel
expended is considered equal at
relight and corresponding
differentials computed

* Not a very large difference eitherway

* The delta-V available is a function

of the LV, LV and payload mass,

etc.

0.7

0.5

0.4

0.3

Difference in inclination in deg, between the deployments

0.1

Y
-~ -~
L™
LD
> -~
-~
e -
-~ o
~ .
-~
-
-~
-~

-
-~
~.‘.-
»
b

Trade-off between differential altitude and
inclination possible, between 4 drop-offs of
50 kg each by a rocket over 3 relights

™ -
-
-
-~

-
~
- -~ -
el

delV = 100m/s, Init Alt= 300 km [= =~ d
delV = 100m/s, Init Alt = 600 km
w—delV = 100m/s, Init Alt = 900 km
= = delV = 200m/s, Init Alt= 300 km

delV = 200m/s, Init Alt= 600 km
= = delV = 200m/s, Init Alt= 900 km
==m=delV = 300m/s, Init Alt= 300 km

delV = 300m/s, Init Alt= 600 km
==m=delV = 300m/s, Init Alt= 900 km

10 15 20 25 30
Difference in altitude in km, between the deployments

oear= e+ s #2500 Y Pl

Precessing Constellations

* The time required to spread out in RAAN is a function of the differentials and
chief orbit

* The differentials are a function of delta-V available, chief orbit and relights

* The delta-V available is a function 270
of the LV, LV and payload mass, etc.

N
=,
o

/ = Iniit Alt = 300 km
: Init Alt = 600 km

e [0t Alt = 900 km

Example: Orbital ATK Pegasus
Unlimited relights, 200 kg payload mass,
127 kg HAPS mass (for more precise
initial orbit injection), 50 kg adapter
mass, 57 kg total fuel mass (ED keeps
30% margin on fuel because of pre-Phase
A uncertainty)

N
o
o

240 |

230

Total delta-V available
over all relights and deployments

220 |

210 - -

Delta-V available per drop and total, can 1 2 3 4 5 6 7

be calculated from LV params. Number of relights by the launch vehicle,
between deployments

One architecture per nsats, chief alt, chief inc and LV (easily scales with
the DB) represented by differentials => computed per time required or
maximum available fuel

Results: Percentage Area Covered

98.7deg, 4 planes

98.7deg, 2 planes
g 98.7 deg, 1 plane
T 98.2deg, 2 planes
98.2deg, 1 plane
= 97 8deg 4 planes
97.8deg, 2 planes

97.8deg. 1 plane

nation and numb

S 97.4deg 4 planes
)

97 4deg, 2 planes
97.4deg, 1 plane

wHeterogeneous & Homogeneous

Walker Constellations
VS.

Precessing
Constellations

Percentage Area of Interest covered in 6 hours

.

bit

-

Altitude of the chief o1

uDeployed «+1month &+ 3 months &+ 6 months

818 km

712 km

606 km

500 km

T T T T T T

0 10 20 30 40 50 60
Percentage Area of Interest covered in 6 months

Types of Constellations

* Ad-Hoc constellations (and even deployment using a single rocket) are
well-captured by Planet Labs and their well-spread 143 satellites

e Currently, 100 sats @ 500+/-3 km SSO, 11 sats @ 600+/-3 km SSO, 32
sats @ ISS Orbit < 400 km Polar spread of 143 Planet Labs satellites

. . RADIUS: Satellite Altitude in kms
[
A” TLE data 1S Onllne AZIMUTH: Satellite Mean Anomaly in degrees

90

* 88 Doves deployed on Feb 120 6003 60
15, 2017 and TLE analyzed
on Feb 18, 2017 150 K 500 " *#30

* Total TA spread = 27.5 deg ,/’7\;4%;3\\ . X

\ / Rkt .\

* Average between satellites * | g 300%%; ; {3,‘ .
= 0.3 deg (assumed to be % 4 N ﬁ‘##/l 'K Geploped
constrained only by launch ‘ YN ANT by the

. . %k‘ ISS deployments 7\% o
tracking window) 0 | 3 230

e All launched within 10
minutes 240 * 20

Data Reducer and Metric Computer

* Processes all Mono satellite files and all Ground satellite files in file tree

* Propagates all spacecraft and stores coverage in memory => OC call

* Can support atmospheric drag modeling (for missions without
maintenance) and rectangular sensors in the last 6 months => OC call

cone = cos~*(cos(alFOV /2) cos(crFOV /2))

clock = sin~

1 (sin(chOV/Z)

sin(aFOV /2) * sin(cone))

Aol

- ~
e SH

\

\.

| \
)
i

/
i
/
V.
. /-
>

~ .
R 5 e
9 b

o

* Processes all the DSM files in file tree as a permutation of Mono, and
computes results per DSM and all ephemeris per mono

Data Reducer and Metric Computer

* 4 types of outputs: 2 per architecture and 2 per monolithic spacecraft
* Architecture: gbl.csv and Icl.csv

* Mono: eph.csv and angles.csv

gbl.csv
Time [s] TimeToCoverage|[s] AccessTime [s] RevisitTime [s] Coverage NumOfPOlpasses
t0 t1 TCavg TCmin TCmax ATavg ATmin ATmax RTavg RTmin RTmax % Grid Covere PASavg PASmin PASmax
0 2592000 200098 27 906039 19.3808 0 54 242682 5832 906282 99.3647 12.2833 0 102
Data Latency [s] NumGSpasses TotalDownlinkT DownlinkTimePerPass [s] CrossSwath[km)] AlongSwath [km] SpatialResolution [m]
PASmax DLavg DLmin DLmax PassesPerDay DLTimePerDay DLTavg DLTmin DLTmax CSavg CSmin CSmax ASavg ASmin ASmax SRmin SRmax
102 15500 5454 36882 5.4 2101.5 2.40226 54 486 185.852 185.852 185.852 185.852 185.852 185.852 29.5368 32.0538
Time [s] POI [deg] [deg] [km] AccessTime [s] RevisitTime [s] TimeToCovel Number of Passes
to tl POI lat lon alt ATavg ATmin ATmax RvTavg RvTmin RvTmax TCcov numPass
0 2592000 128 82.8571 0 0 14.2105 0 27 46232.2 5859 83187 1485 57
0 2592000 129 82.8571 11.6129 0 18.4737 0 27 46227.9 5859 83160 1458 57
0 2592000 130 82.8571 23.2258 0 20.25 0 27 47066.9 5859 83160 1431 56
0 2592000 131 82.8571 34.8387 0 21 0 27 47273.5 5859 83160 78705 54
0 2592000 132 82.8571 46.4516 0 20.5 0 27 47385 5859 83160 72792 54
0 2592000 133 82.8571 58.0645 0 19.1455 0 27 46399.5 5859 83160 72765 55
0 2592000 134 82.8571 69.6774 0 16.5 0 27 47278 5859 83160 66852 54
0 2592000 135 82.8571 81.2903 0 11 0 27 47283.6 5859 83187 66825 54
0 2592000 136 82.8571 92.9032 0 5.89091 0 27 46304 5859 83187 66798 55
0 2592000 137 82.8571 104.516 0 2.41072 0 27 45572.6 5886 83187 60885 56
Time[s] Ecclde |CI .CSV
gl Inc[deg] SMA[km] AOP|[deg] RAAN[deg] MA[deg] Lat[deg] Lon[deg] Altlkm]
43 3.82E-16 98.2081 7083.14 0 0.00049052 2.60613 2.59503 97.9013 705.047
86 2.87E-16 98.2081 7083.14 0 0.00098105 5.21226 5.18983 97.3483 705.177
172 3.33E-16 98.2081 7083.14 0 0.00196209 10.4245 10.3778 96.2315 705.692
215 6.10E-16 98.2081 7083.14 0 0.00245261 13.0306 12.9704 95.6645 706.073
258 4.30E-16 98.2081 7083.14 0 0.00294314 15.6368 15.5618 95.0894 706.532
344 5.62E-16 98.2081 7083.14 0 0.00392418 20.849 20.7401 93.9072 707.667
387 3.73E-16 98.2081 7083.14 0 0.00441471 23.4552 23.3264 93.2956 708.335 eph cSV
473 1.44E-16 98.2081 7083.14 0 0.00539575 28.6674 28.4919 92.0186 709.841 °

Results: Ground Station Trades

2500

Number of ground station passes in 30 days

2000 r
1500 [
1000 r

500

2

 The number and position of ground stations with respect to any satellite
orbit affects the latency of data downlink, number of GS accesses or passes
available, access time, etc.

* Example of 2 single-sats downlinking to the NEN

* The output bounds specified by user should determine the minimum
number of ground stations to be included in the trade, for a given
spacecraft and orbit.

1

¢ From a satellite in Landsat orbit (SSO) ‘
@ From a satellite in ISS orbit (51.6deg)
o Yoo
L
o
2 3 4 5 6 7 8 9

Number of ground stations in NEN, with X-band downlink

Average latency in hours between

ground station passes over 30 days

()]

S

w

N

—
T

0

‘@

4 From a satellite in Landsat orbit (SSO)
® From a satellite in ISS orbit (51.6deg)

Only GS with
appropriate
latitudes and
comm bands

1

O
considered
°
¢ ¢ ©
¢
| | | ' ® ¢ ¢ o
2 3 4 5 6 7 8 9

Number of ground stations in NEN, with X-band downlink

Results: Inputs to a GMAO OSSE

Latitude in degrees

4 satellite clusters in LEO between 500-820 km with a ~90 deg full FOV
Each cluster is 120 deg apart in phase

Find the best constellation to cover the globe in 6 hours

% Coverage varies between 27.5% and 56.1% over all subspaces or arch
-0.3% case shown... More non TAT-C optimization can improve till ~65%

Walker Star Constellation with 4 sats in 4 planes - Time to Coverage

Time to Coverage in hours

-60

-150 -100 -50 0 50 100 150
Longitude in degrees **Data processed on MATLAB

Summary / Future Work

» Software tools for the pre-phase A design of constellations for Earth
Science are essential to understand trade-offs at the concept stage

e TAT-C will facilitate DSM Pre-Phase A investigations and by allowing
the users to optimize DSM designs with respect to a-priori science
goals [Full tool in a future publication]

e Executive Driver (ED), Orbit and Coverage (OC), Data Reduction and
Metric Computation (RM) modules read user inputs and output
constraints, generate architectures of constellations, propagate
them and evaluate metrics

* Use Cases — Landsat, Wide Angle Radiometer. Results validated
against AGI STK; New constellations, LV and GS trades introduced

* Future Work — Instrument module, higher fidelity LV module,
addition of machine learning to tradespace search

* Parallel Work — Schedule optimization for agile steering
constellations using ground or onboard autonomy

Acknowledgements

Funding: NASA Earth Science Technology Office (ESTO)
Advanced Information Systems Technology Program 2014
(2015-2017)

Other Team Members: Paul Grogan, Matt Holland, Olivier
de Weck/Afreen Siddiqi, Philip Dabney and Veronica
Foreman

22

Thank you!

Questions?

Sreeja.Nag(@nasa.gov

sreejanag(@alum.mit.edu

23

